搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

引用本文:
Citation:

郑好, 刘慧雯, 方语萱, 范冬宇, 韩玉辉, 侯春源, 刘威, 夏志良, 霍宗亮
cstr: 32037.14.aps.74.20250891

A compute-in-memory architecture and system-technology codesign simulator based on 3D NAND flash

ZHENG Hao, LIU Huiwen, FANG Yuxuan, FAN Dongyu, HAN Yuhui, HOU Chunyuan, LIU Wei, XIA Zhiliang, HUO Zongliang
cstr: 32037.14.aps.74.20250891
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 随着ChatGPT等大语言模型的发展, 产业界对硬件的算力、容量和功耗提出了新的需求. 存算一体(compute-in-memory, CIM)技术相较于传统近存计算, 减少了数据搬移, 显著降低功耗. 而在众多存储器中, 3D NAND闪存因其成熟的工艺制造技术和超高容量, 是最有可能实现大模型本地部署的候选方案. 然而, 目前针对3D NAND闪存CIM芯片的研究大多停留在学术研究阶段, 未基于产品级3D NAND闪存芯片进行系统性的CIM架构设计和大模型功能验证. 对此, 本文搭建了基于PyTorch框架的大语言模型仿真器平台来评估系统架构的性能, 并提出了一种基于源线背面切分工艺的通用3D NAND架构. 该架构通过改动3D NAND的源线制造工艺以支持CIM计算, 工艺成本极低, 可供产业界快速迭代, 并完善了相应的映射算法和流水线设计. 最后通过仿真器平台对所提出的架构在电流分布和量化的影响下进行了性能评估, 仿真结果表明所设计的产品级3D NAND芯片可以在GPT-2-124M大模型上做到20 tokens/s的生成速度和5.93 TOPS/W的能效比, 在GPT-2-355M大模型上做到8.5 tokens/s的生成速度和7.17 TOPS/W的能效比.
    The rapid advancement of large language models (LLM) such as ChatGPT has imposed unprecedented demands on hardware in terms of computational power, memory capacity, and energy efficiency. Compute-in-memory (CIM) technology, which integrates computing directly into memory arrays, has become a promising solution that can overcome the data movement bottlenecks of traditional von Neumann architectures, significantly reduce power consumption and achieve large-scale parallel processing. Among various non-volatile memory candidates, 3D NAND flash stands out due to its mature manufacturing process, ultrahigh density, and cost-effectiveness, making it a strong contender for commercial CIM deployment and local inference of large models.Despite these advantages, most of existing researches on 3D NAND-based CIM remain at an academic level, focusing on theoretical designs or small-scale prototypes, with little attention paid to system-level architecture design and functional validation using product-grade 3D NAND chips for LLM applications. To address this gap, we propose a novel CIM architecture based on 3D NAND flash, which utilizes a source line (SL) slicing technique to partition the array and perform parallel computation at minimal manufacturing cost. This architecture is complemented by an efficient mapping algorithm and pipelined dataflow, enabling system-level simulation and rapid industrial iteration.We develop a PyTorch-based behavioral simulator for LLM inference on the proposed hardware, evaluating the influences of current distribution and quantization on system performance. Our design supports INT4/INT8 quantization and employs dynamic weight storage logic to minimize voltage switching overhead, and is further optimized through hierarchical pipelining to maximize throughput under hardware constraints.Simulation results show that our simulation-grade 3D NAND compute-in-memory chip reaches generation speeds of 20 tokens/s with an energy efficiency of 5.93 TOPS/W on GPT-2-124M and 8.5 tokens/s with 7.17 TOPS/W on GPT-2-355M, respectively, while maintaining system-level reliability for open-state current distributions with σ < 2.5 nA; in INT8 mode, quantization error is the dominant accuracy bottleneck.Compared with previous CIM solutions, our architecture supports larger model loads, higher computational precision, and significantly reduced power consumption, as evidenced by comprehensive benchmarking. The SL slicing technique keeps array wastage below 3%, while hybrid wafer-bonding integrates high-density ADC/TIA circuits to improve hardware resource utilization.This work represents the first system-level simulation of LLM inference on product-grade 3D NAND CIM hardware, providing a standardized and scalable reference for future commercialization. The complete simulation framework is released on GitHub to facilitate further research and development. Future work will focus on device-level optimization of 3D NAND and iterative improvements of the simulator algorithm.
    [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

  • 参数名功能参数名功能
    Quantization bits量化数Block setup time时间常数
    Current mean /Scale器件开态电流分布均值/标准差WL switch time时间常数
    Blocks/Operation单次计算操作的Block数量TSG switch time时间常数
    Max current sum单次计算求和的电流数BL switch time时间常数
    Symmetric mode是否采用对称量化TIA conversion time时间常数
    ADC multiplexing factorADC复用数ADC conversion time时间常数
    X path current横向通道电流Planes/Die硬件常数
    Y Path current纵向通道电流Layers/Die硬件常数
    Vcc电压Blocks/Plane硬件常数
    Background current背景电流TSGs/Block硬件常数
    Num of TIAsTIA数量Bit lines/Plane硬件常数
    下载: 导出CSV

    硬件参数名 硬件参数名
    Plane数每芯片 4 Layer数每芯片 32
    Block数每Plane 216 纵向切分数 216
    TSG数每Block 10 横向切分数 1024
    BL数每Plane 131072 ADC最大分辨率 128
    *缩减层数用于简化仿真, 实际产品为128层
    下载: 导出CSV

    模型层名 计算硬件 参数形状 参数量(INT8)
    嵌入层 CPU/GPU (50256, 768)
    QKV投影层 3D NAND-SS (768, 2304) 13.5 MB
    注意力矩阵>计算 CPU/GPU (序列长度, 768)
    注意力矩阵投影 3D NAND-SS (768, 768) 4.5 MB
    多层感知机上投影层 3D NAND-SS (768, 3072) 18 MB
    激活函数 CPU/GPU
    多层感知机下投影层 3D NAND-SS (3072, 768) 18 MB
    多层感知机反量化层 3D NAND-SS (3072, 768) 18 MB
    归一化 CPU/GPU
    残差连接 CPU/GPU
    模型头 CPU/GPU (768, 50256)
    注: 仅显示单个注意力模块的参数数量. 在实际算法中, 注意力模块通常是多层的. 对于GPT-2-124M模型, 注意力模块有12层.
    下载: 导出CSV

    参数名 参数名
    Block 建立时间/μs $7{b_{{\text{num}}}}$ X通路电流/mA 96.732
    BL切换时间/μs 13 Y通路电流/nA 150
    WL切换时间/μs 2 Vcc/V 2.5
    TSG切换时间/μs 0.8 ADC+TIA功率/mW 0.5
    TIA 转换时间/μs 0.25
    ADC转换时间/μs 0.002
    注: X通路电流指在单个Plane中建立一个Block的所有WL电压所需时间内的平均电流; Y通路电流指在单个Plane中建立一个BL所需时间的平均电流.
    下载: 导出CSV

    器件技术节点 32 nm 3D NAND[11] 40 nm 3D NAND-SS 40 nm 3D NAND-SS
    ADC精度/bit 7 7 7
    Cell精度/bit 1 1 1
    面积/mm2 17.91 40 40
    容量利用率/% 33.5 @INT8 17 @INT8 60 @INT8
    算力/TOPS 0.0018 4.57 4.57
    能耗比/(TOPS·W–1) 12.95 @INT8 5.93 @INT8 7.17 @INT8
    负载模型 ResNet-18 GPT-2-124M GPT-2-355M
    下载: 导出CSV
  • [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

  • [1] 李鸿德, 张鸿, 焦扬, 雷志锋, 杨炜坤, 李惠, 路国光, 张战刚. 大气中子在电荷俘获型3D NAND闪存中引起的单粒子翻转特性及机理研究. 必威体育下载 , 2026, 75(3): . doi: 10.7498/aps.75.20251123
    [2] 方语萱, 夏志良, 杨涛, 周文犀, 霍宗亮. 3D NAND闪存中氟攻击问题引起的字线漏电的改进. 必威体育下载 , 2024, 73(6): 068502. doi: 10.7498/aps.73.20231557
    [3] 方语萱, 杨益, 夏志良, 霍宗亮. 3D NAND闪存中TiN与氧化表面F吸附作用的第一性原理研究. 必威体育下载 , 2024, 73(12): 128502. doi: 10.7498/aps.73.20240254
    [4] 陈阳洋, 何毓辉, 缪向水, 杨道虹. 基于3D-NAND的神经形态计算. 必威体育下载 , 2022, 71(21): 210702. doi: 10.7498/aps.71.20220974
    [5] 张宇琦, 王俊杰, 吕子玉, 韩素婷. 应用于感存算一体化系统的多模调控忆阻器. 必威体育下载 , 2022, 71(14): 148502. doi: 10.7498/aps.71.20220226
    [6] 武长春, 周莆钧, 王俊杰, 李国, 胡绍刚, 于奇, 刘洋. 基于忆阻器的脉冲神经网络硬件加速器架构设计. 必威体育下载 , 2022, 71(14): 148401. doi: 10.7498/aps.71.20220098
    [7] 单旋宇, 王中强, 谢君, 郑嘉慧, 徐海阳, 刘益春. 面向感存算一体化的光电忆阻器件研究进展. 必威体育下载 , 2022, 71(14): 148701. doi: 10.7498/aps.71.20220350
    [8] 王童, 温娟, 吕康, 陈健中, 汪亮, 郭新. 仿生生物感官的感存算一体化系统. 必威体育下载 , 2022, 71(14): 148702. doi: 10.7498/aps.71.20220281
    [9] 吴小宇, 赵虎, 李智. 基于网络分析仪的3D Transmon相干测量方法. 必威体育下载 , 2020, 69(13): 130302. doi: 10.7498/aps.69.20200252
    [10] 侯智善, 徐帅, 骆杨, 李爱武, 杨罕. 激光3D纳米打印温度敏感的微球激光器. 必威体育下载 , 2019, 68(19): 194204. doi: 10.7498/aps.68.20190298
    [11] 熊益军, 王岩, 王强, 王春齐, 黄小忠, 张芬, 周丁. 一种基于3D打印技术的结构型宽频吸波超材料. 必威体育下载 , 2018, 67(8): 084202. doi: 10.7498/aps.67.20172262
    [12] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究. 必威体育下载 , 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [13] 王震, 李永新, 惠小健, 吕雷. 一类3D混沌系统的异宿轨道和backstepping控制. 必威体育下载 , 2011, 60(1): 010513. doi: 10.7498/aps.60.010513
    [14] 尚家香, 喻显扬. 3d过渡金属在NiAl中的占位及对键合性质的影响. 必威体育下载 , 2008, 57(4): 2380-2385. doi: 10.7498/aps.57.2380
    [15] 赵宗彦, 柳清菊, 张 瑾, 朱忠其. 3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究. 必威体育下载 , 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
    [16] 赵新新, 陶向明, 陈文彬, 蔡建秋, 谭明秋. 3d过渡金属原子单层在Pd(001)表面磁性的第一性原理研究. 必威体育下载 , 2005, 54(12): 5849-5854. doi: 10.7498/aps.54.5849
    [17] 吕瑾, 许小红, 武海顺. 3d系列 (TM)4 团簇的结构和磁性. 必威体育下载 , 2004, 53(4): 1050-1055. doi: 10.7498/aps.53.1050
    [18] 周一阳. 自旋三重态对3d~4/3d~6离子零场分裂参量的影响. 必威体育下载 , 1995, 44(1): 122-127. doi: 10.7498/aps.44.122
    [19] 张强基, 陈乃群, 华中一. 3d 金属电离损失谱研究. 必威体育下载 , 1991, 40(8): 1344-1348. doi: 10.7498/aps.40.1344
    [20] 顾一鸣, 黄明竹, 汪克林. GaAs1-xPx中3d过渡金属杂质的电子结构. 必威体育下载 , 1988, 37(1): 11-19. doi: 10.7498/aps.37.11
计量
  • 文章访问数:  688
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-08
  • 修回日期:  2025-10-01
  • 上网日期:  2025-10-10

返回文章
返回