\begin{document}${\rm{Ta}}_4{\rm{C}}_n^{-/0} $\end{document} (n = 0—4)团簇电子结构、成键性质以及稳定性进行了研究. 实验测得\begin{document}${\rm{Ta}}_4{\rm{C}}_n^{-} $\end{document} (n = 0—4)团簇负离子基态结构的垂直脱附能分别为(1.16 ± 0.08), (1.35 ± 0.08), (1.51 ± 0.08), (1.30 ± 0.08)和(1.86 ± 0.08) eV. 中性Ta4Cn (n = 0—4)团簇的电子亲和能分别为(1.10 ± 0.08), (1.31 ± 0.08), (1.44 ± 0.08), (1.21 ± 0.08)和(1.80 ± 0.08) eV. 研究发现, \begin{document}${\rm{Ta}}_4^{-/0} $\end{document}团簇为四面体结构, \begin{document}${\rm{Ta}}_4{\rm{C}}_1^{-/0} $\end{document}团簇中碳原子覆盖在Ta4四面体的一个面上方, \begin{document}${\rm{Ta}}_4{\rm{C}}_2^{-/0} $\end{document}团簇则是两个碳原子分别覆盖在Ta4四面体中的两个面上方. \begin{document}${\rm{Ta}}_4{\rm{C}}_3^{-/0} $\end{document}团簇是一个缺角立方体结构. \begin{document}${\rm{Ta}}_4{\rm{C}}_4^{-/0} $\end{document}团簇则是近似立方体结构, 可以看成是α-TaC面心立方晶体的最小晶胞单元. 分子轨道分析结果显示\begin{document}${\rm{Ta}}_4{\rm{C}}_3^{-} $\end{document}团簇的单电子最高占据轨道主要布居在单个钽原子周围, 导致\begin{document}${\rm{Ta}}_4{\rm{C}}_3^{-} $\end{document}团簇的垂直脱附能明显低于其相邻团簇. 理论研究显示随着碳原子数目的增加, \begin{document}${\rm{Ta}}_4{\rm{C}}_n^{-/0} $\end{document} (n = 0—4)团簇中的钽-钽金属键逐渐被钽-碳共价键取代, 单原子结合能逐渐增加且明显高于\begin{document}${\rm{Ta}}_{4+n}^{-/0} $\end{document}(n = 0—4)团簇. 中性Ta4C4的单原子结合能高达7.13 eV, 这说明钽-碳共价键的形成有利于提高材料的熔点, 这与碳化钽作为高温陶瓷材料的特性密切相关."> <inline-formula><tex-math id="Z-20210109160823">\begin{document}${\bf Ta_4C}_{ n}^{\bf -/0}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="2-20201351_Z-20210109160823.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="2-20201351_Z-20210109160823.png"/></alternatives></inline-formula> (<i>n</i> = 0—4)团簇的电子结构、成键性质及稳定性 - 必威体育下载

搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

${\bf Ta_4C}_{ n}^{\bf -/0}$ (n= 0—4)团簇的电子结构、成键性质及稳定性

张超江, 许洪光, 徐西玲, 郑卫军

Electronic structures, chemical bonds, and stabilities of ${\rm{Ta}}_4{\rm{C}}_n^{-/0} $ (n= 0–4) clusters: Anion photoelectron spectroscopy and theoretical calculations

Zhang Chao-Jiang, Xu Hong-Guang, Xu Xi-Ling, Zheng Wei-Jun
PDF
HTML
导出引用
  • 本文采用尺寸选择的负离子光电子能谱技术, 结合密度泛函理论, 对 ${\rm{Ta}}_4{\rm{C}}_n^{-/0} $ ( n= 0—4)团簇电子结构、成键性质以及稳定性进行了研究. 实验测得 ${\rm{Ta}}_4{\rm{C}}_n^{-} $ ( n= 0—4)团簇负离子基态结构的垂直脱附能分别为(1.16 ± 0.08), (1.35 ± 0.08), (1.51 ± 0.08), (1.30 ± 0.08)和(1.86 ± 0.08) eV. 中性Ta 4C n( n= 0—4)团簇的电子亲和能分别为(1.10 ± 0.08), (1.31 ± 0.08), (1.44 ± 0.08), (1.21 ± 0.08)和(1.80 ± 0.08) eV. 研究发现, ${\rm{Ta}}_4^{-/0} $ 团簇为四面体结构, ${\rm{Ta}}_4{\rm{C}}_1^{-/0} $ 团簇中碳原子覆盖在Ta 4四面体的一个面上方, ${\rm{Ta}}_4{\rm{C}}_2^{-/0} $ 团簇则是两个碳原子分别覆盖在Ta 4四面体中的两个面上方. ${\rm{Ta}}_4{\rm{C}}_3^{-/0} $ 团簇是一个缺角立方体结构. ${\rm{Ta}}_4{\rm{C}}_4^{-/0} $ 团簇则是近似立方体结构, 可以看成是 α-TaC面心立方晶体的最小晶胞单元. 分子轨道分析结果显示 ${\rm{Ta}}_4{\rm{C}}_3^{-} $ 团簇的单电子最高占据轨道主要布居在单个钽原子周围, 导致 ${\rm{Ta}}_4{\rm{C}}_3^{-} $ 团簇的垂直脱附能明显低于其相邻团簇. 理论研究显示随着碳原子数目的增加, ${\rm{Ta}}_4{\rm{C}}_n^{-/0} $ ( n= 0—4)团簇中的钽-钽金属键逐渐被钽-碳共价键取代, 单原子结合能逐渐增加且明显高于 ${\rm{Ta}}_{4+n}^{-/0} $ ( n= 0—4)团簇. 中性Ta 4C 4的单原子结合能高达7.13 eV, 这说明钽-碳共价键的形成有利于提高材料的熔点, 这与碳化钽作为高温陶瓷材料的特性密切相关.
    The electronic structures, chemical bonds and stabilities of ${\rm{Ta}}_4{\rm{C}}_n^{-/0} $ ( n= 0–4) clusters are investigated by combining anion photoelectron spectroscopy with theoretical calculations. The vertical detachment energy values of ${\rm{Ta}}_4{\rm{C}}_n^{-} $ ( n= 0–4) anions are measured to be (1.16 ± 0.08), (1.35 ± 0.08), (1.51 ± 0.08), (1.30 ± 0.08), and (1.86 ± 0.08) eV, and the electron affinities of neutral Ta 4C n( n= 0–4) are estimated to be (1.10 ± 0.08), (1.31 ± 0.08), (1.44 ± 0.08), (1.21 ± 0.08), and (1.80 ± 0.08) eV, respectively. It is found that the geometry structure of ${\rm{Ta}}_4^- $ cluster is a tetrahedron, and the most stable structure of ${\rm{Ta}}_4{\rm{C}}_1^{-} $ has a carbon atom capping one face of the ${\rm{Ta}}_4^- $ tetrahedron, while in the ground state structure of ${\rm{Ta}}_4{\rm{C}}_2^{-} $ cluster, two carbon atoms cap two faces of the ${\rm{Ta}}_4^- $ tetrahedron, respectively. The lowest-lying isomer of ${\rm{Ta}}_4{\rm{C}}_3^{-} $ cluster holds a cube-cutting-angle structure. The ground state structure of ${\rm{Ta}}_4{\rm{C}}_4^{-} $ is a 2 × 2 × 2 cube. The neutral Ta 4C n( n= 0–4) clusters have similar structures to their anionic counterparts and the neutral Ta 4C 4cluster can be considered as the smallest cell for α-TaC face-centered cube crystal. The analyses of molecular orbitals reveal that the SOMO of ${\rm{Ta}}_4{\rm{C}}_3^{-} $ is mainly localized on one tantalum atom, inducing a low VDE. Our results show that the Ta-Ta metal bonds are replaced by Ta-C covalent bonds gradually as the number of carbon atoms increases in ${\rm{Ta}}_4{\rm{C}}_n^{-/0} $ ( n= 0–4) clusters. The per-atom binding energy values of ${\rm{Ta}}_4{\rm{C}}_n^{-/0} $ ( n= 0–4) clusters are higher than those of ${\rm{Ta}}_{4+n}^{-/0} $ ( n= 0–4) clusters, indicating that the formation of Ta-C covalent bonds may raise the melting point. The per-atom binding energy of neutral Ta 4C 4is about 7.13 eV, which is quite high, which may contribute to the high melting point of α-TaC as an ultra-high temperature ceramic material.
        通信作者:徐西玲,xlxu@iccas.ac.cn; 郑卫军,zhengwj@iccas.ac.cn
      • 基金项目:北京市科学技术委员会(批准号: Z191100007219009)和中国科学院(批准号: QYZDB-SSW-SLH024)资助的课题
        Corresponding author:Xu Xi-Ling,xlxu@iccas.ac.cn; Zheng Wei-Jun,zhengwj@iccas.ac.cn
      • Funds:Project supported by the Beijing Municipal Science & Technology Commission, China (Grant No. Z191100007219009) and the Chinese Academy of Sciences (Grant No. QYZDB-SSW-SLH024)
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

    • 异构体 电子态 对称点群 E/eV VDE/eV ADE/eV
      理论值 实验值 理论值 实验值
      ${\rm{Ta}}_4^{-} $ 0A C2 2B 0 0.94 1.16 0.92 1.10
      0B C1 4A 0.30 1.32 1.16
      0C D2h 2B2u 0.92 1.59 1.39
      ${\rm{Ta}}_4{\rm{C}}_1^{-} $ 1A Cs 2A'' 0 1.23 1.35 1.22 1.31
      1B C2v 2B2 0.27 1.07 1.03
      1C C2v 2B2 0.46 1.18 0.76
      ${\rm{Ta}}_4{\rm{C}}_2^{-} $ 2A Cs 2A'' 0 1.49 1.51 1.34 1.44
      2B Cs 2A'' 0.29 1.22 1.18
      2C Cs 4A'' 0.30 1.05 1.04
      ${\rm{Ta}}_4{\rm{C}}_3^{-} $ 3A C3v 2A1 0 1.17 1.30 1.13 1.21
      3B Cs 6A'' 1.03 1.66 1.65
      3C C2v 2A1 1.41 1.35 1.29
      ${\rm{Ta}}_4{\rm{C}}_4^{-} $ 4A D2d 4B2 0 1.70 1.86 1.69 1.80
      4B C1 2A 0.09 1.61 1.39 1.60 1.35
      4C D2d 6A2 0.21 1.75 1.74
      下载: 导出CSV

      n Eb
      ${\rm{Ta}}_4{\rm{C}}_n^{-} $ ${\rm{Ta}}_{4+n}^{-} $ Ta4Cn Ta4+n
      0 4.40 4.40 4.35 4.35
      1 5.10 4.78 5.43 4.65
      2 5.90 4.99 6.16 4.93
      3 6.56 5.30 6.81 5.22
      4 6.98 5.44 7.13 5.37
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

      [32]

      [33]

      [34]

      [35]

      [36]

      [37]

      [38]

      [39]

      [40]

      [41]

      [42]

      [43]

      [44]

      [45]

      [46]

      [47]

      [48]

      [49]

      [50]

      [51]

      [52]

      [53]

      [54]

      [55]

      [56]

      [57]

      [58]

      [59]

      [60]

      [61]

      [62]

      [63]

      [64]

      [65]

      [66]

      [67]

      [68]

      [69]

      [70]

      [71]

      [72]

      [73]

      [74]

      [75]

      [76]

      [77]

      [78]

      [79]

      [80]

      [81]

      [82]

      [83]

      [84]

    计量
    • 文章访问数:6221
    • PDF下载量:196
    • 被引次数:0
    出版历程
    • 收稿日期:2020-08-17
    • 修回日期:2020-09-01
    • 上网日期:2021-01-11
    • 刊出日期:2021-01-20

      返回文章
      返回