搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

引用本文:
Citation:

梁春恬, 孙小军, 黄俊曦, 杨昊瑜, 李小华, 蔡崇海
cstr: 32037.14.aps.74.20250633

Improvements of traditional optical model and its applications in heavy-ion collision reaction

LIANG Chuntian, SUN Xiaojun, HUANG Junxi, YANG Haoyu, LI Xiaohua, CAI Chonghai
cstr: 32037.14.aps.74.20250633
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 本文针对重离子碰撞中弹核与靶核质量相近体系的相互作用问题, 提出改进型光学模型APOMHI. 该模型突破传统框架中仅侧重靶核贡献的局限, 通过对称化处理弹核与靶核的势场影响, 在Woods-Saxon型光学势场构建中, 弹靶核的扩散宽度与半径参数采用对等形式, 确保两者贡献的等价性. 同时, 角动量耦合方式也相应由L-S耦合替代了j-j耦合. 将改进后的光学模型应用于以18O作为弹核的系列重离子碰撞反应, 通过拟合弹性散射角分布与复合核吸收截面数据, 得到了一组普适唯象光学势, 经比较, 理论结果与现有实验数据大体相符.
    To describe the projectile-target interaction in heavy-ion collision, the traditional optical model is improved and a corresponding optical model for heavy-ion collisions is established in this work The program APOMHI is developed accordingly. In heavy-ion collisions, the mass of the projectile is comparable to the mass of target nucleus. Therefore, the projectile and target nucleus must be treated equally. The potential field for their relative motion must arise from an equivalent contribution of both nuclei, not just from the target nucleus. Consequently, the angular momentum coupling scheme must adopt L - S coupling, instead of j - j coupling. The projectile spin i and target spin I first couple to form the projectile-target system spin S (which varies between $ \left| {I - i} \right| $ and $ i + I $). Then, the spin S of this system couples with the orbital angular momentum L of relative motion, forming a total angular momentum J . Thus, the radial wave function UlSJ (r) involves three quantum numbers: l , S , and J , while traditional optical model only involves l and j . Furthermore, since the mass of projectile is similar the mass of target, the form of the optical model potential is symmetrical relative to the projectile and target. The projectile nucleus and the target nucleus are still assumed to be spherical, and their excited states are not considered. The projectile may be lighter or heavier than the target, but they cannot be identical particles. By using this optical model program APOMHI, the elastic scattering angular distributions and compound nucleus absorption cross sections for heavy-ion collisions can be calculated. Taking for example a series of heavy-ion collision reactions with 18O as the projectile nucleus, a corresponding set of universal optical potential parameters is obtained by fitting experimental data. The comparisons show that the theoretical calculations generally accord well with the available experimental data. Here, the results for fusion cross-sections and elastic scattering angular distributions using several representative target nuclei (lighter, comparable in mass, heavier, and heavy compared to the projectile nucleus) are taken for example. Specifically, the fusion cross-section results correspond to targets 9Be, 27Al, 63Cu and 150Sm, while the elastic scattering angular distributions correspond to targets 16O, 24Mg, 58Ni, and 120Sn.
      通信作者: 孙小军, sxj0212@gxnu.edu.cn
    • 基金项目: 广西核物理与核技术重点实验室开放课题(批准号: NLK2022-03)和中央引导地方科技发展资金项目(批准号: 桂科ZY22096024)资助的课题.
      Corresponding author: SUN Xiaojun, sxj0212@gxnu.edu.cn
    • Funds: Project supported by the Open Fund of the Guangxi Key Laboratory of Nuclear Physics and Technology, China (Grant No. NLK2022-03), and the Central Government Guidance Funds for Local Scientific and Technological Development, China (Grant No. Guike ZY22096024).
    [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    [40]

    [41]

    [42]

    [43]

    [44]

    [45]

    [46]

    [47]

    [48]

    [49]

    [50]

    [51]

    [52]

    [53]

    [54]

    [55]

    [56]

    [57]

    [58]

    [59]

    [60]

    [61]

    [62]

    [63]

    [64]

    [65]

    [66]

    [67]

    [68]

    [69]

    [70]

    [71]

    [72]

    [73]

    [74]

    [75]

    [76]

    [77]

    [78]

    [79]

    [80]

    [81]

    [82]

  • 各部分光学势 参数 数目
    库仑势 $ {V}_{\mathrm{C}}\left(r\right) $ $ {r}_{\mathrm{C}\mathrm{A}}, {r}_{\mathrm{C}\mathrm{B}} $ 2
    中心势 $ {V}_{\mathrm{c}}\left(r\right) $ $ {r}_{\mathrm{c}\mathrm{A}} $,$ {r}_{\mathrm{c}\mathrm{B}}, {a}_{\mathrm{c}\mathrm{A}}, {a}_{\mathrm{c}\mathrm{B}0}, {a}_{\mathrm{C}\mathrm{B}1} $ 5
    面吸收虚部势 $ {W}_{\mathrm{S}}\left(r\right) $ $ r_{\mathrm{S}\mathrm{A}},r_{\mathrm{S}\mathrm{B}},a_{\mathrm{S}\mathrm{A}},a_{\mathrm{S}\mathrm{B}0},a_{\mathrm{S}\mathrm{B}1} $ 5
    体系收虚部势 $ {W}_{\mathrm{V}}\left(r\right) $ $ {r}_{\mathrm{V}\mathrm{A}}, {r}_{\mathrm{V}\mathrm{B}}, {a}_{\mathrm{V}\mathrm{A}}, {a}_{\mathrm{V}\mathrm{B}0}, {a}_{\mathrm{V}\mathrm{B}1} $ 5
    自旋-轨道实部势 $ {V}_{\mathrm{SO}}(r) $ rRSOA, rRSOB, aRSOA,
    aRSOB0, aRSOB1,$ {\overline{V}_{\mathrm{SO}}} $
    6
    自旋-轨道虚部势 $ {W}_{\mathrm{S}\mathrm{O}}(r) $ rISOA, rISOB, aISOA,
    aISOB0, aISOB1${\overline{W}_{\mathrm{SO}}} $
    6
    中心势强度 $ {\overline{V}_{\mathrm{c}}} $ $ {\overline{V}_{0}, {\overline{V}}_{1}, {\overline{V}}_{2}, {\overline{V}}_{\mathrm{B}}, {\overline{V}}_{4}} $ 5
    面吸收势强度 $ {\overline{W}_{\mathrm{S}}} $ $ {\overline{W}_{\mathrm{S}0}, {\overline{W}}_{\mathrm{S}1}, {\overline{W}}_{\mathrm{S}\mathrm{B}}, {\overline{W}}_{\mathrm{S}2}} $ 4
    体系收势强度 $ {\overline{W}_{\mathrm{V}}} $ $ {\overline{W}_{\mathrm{V}0}, {\overline{W}}_{\mathrm{V}1}, {\overline{W}}_{\mathrm{V}2}} $ 3
    总计 41
    下载: 导出CSV

    各部分光学势 参数 数目
    库仑势 $ {V}_{\mathrm{C}}\left(r\right) $ $ {r}_{\mathrm{C}} $ 1
    0级弥散宽度 $ {a}_{i0} $ $ a_{\mathrm{c}0},a_{\mathrm{S}0},a_{\mathrm{V}0},a_{\mathrm{S}\mathrm{O}0} $ 4
    0级半径参数 $ {r}_{i0} $ $ r_{\mathrm{c}0},r_{\mathrm{S}0},r_{\mathrm{V}0},r_{\mathrm{S}\mathrm{O}0} $ 4
    修正参数 $ \xi $ $ \xi $ 1
    1级弥散宽度 $ a_{\mathrm{\mathit{i}1}} $ $ a_{\mathrm{c}1},a_{\mathrm{S}1},a_{\mathrm{V}1},a_{\mathrm{S}\mathrm{O}1} $ 4
    1级半径参数 $ r_{i1} $ $ r_{\mathrm{c}1},r_{\mathrm{S}1},r_{\mathrm{V}1},r_{\mathrm{S}\mathrm{O}1} $ 4
    中心势强度 $ {\overline{V}}_{\mathrm{c}} $ $ {\overline{V}}_{0}, {\overline{V}}_{1}, {\overline{V}}_{2}, {\overline{V}}_{3}, {\overline{V}}_{4} $ 5
    面吸收势强度 $ {\overline{W}}_{\mathrm{S}} $ $ {\overline{W}}_{\mathrm{S}0}, {\overline{W}}_{\mathrm{S}1}, {\overline{W}}_{\mathrm{S}2}, {\overline{W}}_{\mathrm{S}3} $ 4
    体系收势强度 $ {\overline{W}}_{\mathrm{V}} $ $ {\overline{W}}_{\mathrm{V}0}, {\overline{W}}_{\mathrm{V}1}, {\overline{W}}_{\mathrm{V}2}{, \stackrel{-}{W}}_{\mathrm{V}3} $ 4
    自旋-轨道实部
    势强度
    $ {\overline{V}}_{\mathrm{S}\mathrm{O}} $ VSO 1
    自旋-轨道虚部
    势强度
    $ {\overline{W}}_{\mathrm{S}\mathrm{O}} $ WSO 1
    总计 33
    下载: 导出CSV

    序号 靶核 熔合截面 弹性散射角分布
    EL/MeV 文献 EL/MeV 文献
    1 9Be 7.0—21.0 [31]
    2 10B 22.0—63.0 [32]
    3 11B 21.0—65.0 [32]
    4 13C 105.0 [33]
    5 16O 13.9—85.0 [34,35] 85.0 [36]
    6 24Mg 32.0—72.0 [37] 50.0 [38]
    7 27Al 28.0—72.0 [39,40]
    8 28Si 34.0—72.0 [39]
    9 44Ca 27.0—60.0 [41]
    10 58Ni 35.0—64.0 [42,43] 35.1, 36.0, 37.1, 38.0, 46.0, 63.0 [4446]
    11 60Ni 40.0—63.0 [43] 34.5, 35.5, 37.1, 38.0, 63.0 [44,46]
    12 64Ni 38.5—64.0 [43]
    13 63Cu 40.0—65.0 [47]
    14 65Cu 40.0—65.0 [47]
    15 64Zn 49.0 [48]
    16 74Ge 37.0—61.0 [49]
    17 90Zr 90.0 [50]
    18 92Mo 50.0—65.0 [51]
    19 112Sn 60.0 [52]
    20 116Sn 67.0 [53]
    21 148Nd 61.8—77.0 [54]
    22 150Sm 65.0—125.0 [55,56]
    23 174Yb 83.0 [57]
    24 188Os 80.0—140.0 [58]
    25 192Os 79.0—124.0 [55,56]
    26 194Pt 77.6—106.0 [59]
    27 197Au 77.6—102.0 [60,61]
    28 208Pb 75.0—102.0 [62]
    29 7Li 114 [63]
    30 12C 15.0—216 [6469] 66.2, 85.0, 100.0, 120.0, 216.0 [70,71]
    31 120Sn 60.0, 66.7, 72.0 [46,52,53]
    32 14C 105.0 [72]
    33 61Ni 33.5—52.6 [73]
    下载: 导出CSV

    序号参数数值序号参数数值
    1$ {\overline{V}}_{0} $451.0000000022$ {a}_{\mathrm{R}\mathrm{S}\mathrm{O}\mathrm{B}0} $0.06584537
    2$ {\overline{V}}_{1} $15.3000000023$ {a}_{\mathrm{I}\mathrm{S}\mathrm{O}\mathrm{A}} $0.48015487
    3$ {\overline{V}}_{2} $0.4800000024$ {a}_{\mathrm{I}\mathrm{S}\mathrm{O}\mathrm{B}0} $0.01976280
    4$ {\overline{V}}_{\mathrm{B}} $0.0000000025$ {r}_{\mathrm{c}\mathrm{A}} $1.03999996
    5$ {\overline{V}}_{4} $18.7319297826$ {r}_{\mathrm{c}\mathrm{B}} $1.04000000
    6$ {\overline{W}}_{\mathrm{S}0} $30.0000000027$ {r}_{\mathrm{S}\mathrm{A}} $1.84839511
    7$ {\overline{W}}_{\mathrm{S}1} $–0.9900000028$ {r}_{\mathrm{S}\mathrm{B}} $1.46500000
    8$ {\overline{W}}_{\mathrm{S}\mathrm{B}} $0.0000000029$ {r}_{\mathrm{V}\mathrm{A}} $1.93000000
    9$ {\overline{W}}_{\mathrm{S}2} $0.0000000030$ {r}_{\mathrm{V}\mathrm{B}} $1.47000000
    10$ {\overline{W}}_{\mathrm{V}0} $10.0000000031$ {r}_{\mathrm{R}\mathrm{S}\mathrm{O}\mathrm{A}} $1.04999995
    11$ {\overline{W}}_{\mathrm{V}1} $13.0000000032$ {r}_{\mathrm{R}\mathrm{S}\mathrm{O}\mathrm{B}} $1.55366528
    12$ {\overline{W}}_{\mathrm{V}2} $–0.0120000033$ {r}_{\mathrm{I}\mathrm{S}\mathrm{O}\mathrm{A}} $1.05001342
    13$ {\overline{V}}_{\mathrm{S}\mathrm{O}} $80.0000000034$ {r}_{\mathrm{I}\mathrm{S}\mathrm{O}\mathrm{B}} $1.75388050
    14$ {\overline{W}}_{\mathrm{S}\mathrm{O}} $25.0000000035$ {r}_{\mathrm{C}\mathrm{A}} $1.25000000
    15$ {a}_{\mathrm{c}\mathrm{A}} $0.8500000036$ {r}_{\mathrm{C}\mathrm{B}} $1.25000000
    16$ {a}_{\mathrm{c}\mathrm{B}0} $0.0822956637$ {a}_{\mathrm{c}\mathrm{B}1} $0.24493097
    17$ {a}_{\mathrm{S}\mathrm{A}} $0.3510782138$ {a}_{\mathrm{S}\mathrm{B}1} $0.35000000
    18$ {a}_{\mathrm{S}\mathrm{B}0} $0.3477544839$ {a}_{\mathrm{V}\mathrm{B}1} $0.09000000
    19$ {a}_{\mathrm{V}\mathrm{A}} $0.3962688140$ {a}_{\mathrm{R}\mathrm{S}\mathrm{O}\mathrm{B}1} $0.11783799
    20$ {a}_{\mathrm{V}\mathrm{B}0} $0.3833678141$ {a}_{\mathrm{I}\mathrm{S}\mathrm{O}\mathrm{B}1} $0.07000000
    21$ {a}_{\mathrm{R}\mathrm{S}\mathrm{O}\mathrm{A}} $0.79141617
    下载: 导出CSV

    序号参数数值序号参数数值
    1$ {\overline{V}}_{0} $1300.0000000018$ {a}_{\mathrm{V}0} $0.64614904
    2$ {\overline{V}}_{1} $9.3295412119$ {a}_{\mathrm{S}\mathrm{O}0} $0.55000001
    3$ {\overline{V}}_{2} $–0.0331055720$ {r}_{\mathrm{R}0} $1.20000005
    4$ {\overline{V}}_{3} $–45.0000000021$ {r}_{\mathrm{S}0} $1.24034297
    5$ {\overline{V}}_{4} $34.9734268222$ {r}_{\mathrm{V}0} $1.20000005
    6$ {\overline{W}}_{\mathrm{S}0} $27.7965812723$ {r}_{\mathrm{S}\mathrm{O}0} $1.25000000
    7$ {\overline{W}}_{\mathrm{S}1} $–0.8797226024$ {r}_{\mathrm{C}} $1.25000000
    8$ {\overline{W}}_{\mathrm{S}2} $1.8755728025$ \xi $0.11376333
    9$ {\overline{W}}_{\mathrm{S}3} $1.0761344426$ {a}_{\mathrm{R}1} $0.02999442
    10$ {\overline{W}}_{\mathrm{V}0} $65.9998703027$ {a}_{\mathrm{S}1} $0.02947382
    11$ {\overline{W}}_{\mathrm{V}1} $5.4015379028$ {a}_{\mathrm{V}1} $–0.03926823
    12$ {\overline{W}}_{\mathrm{V}2} $0.0888160029$ {a}_{\mathrm{S}\mathrm{O}1} $0.00000000
    13$ {\overline{W}}_{\mathrm{V}3} $–5.0999999030$ {r}_{\mathrm{R}1} $–0.00313194
    14$ {\overline{V}}_{\mathrm{S}\mathrm{O}0} $10.0000000031$ {r}_{\mathrm{S}1} $0.18612149
    15$ {\overline{W}}_{\mathrm{S}\mathrm{O}0} $1.0000000032$ {r}_{\mathrm{V}1} $0.01397228
    16$ {a}_{\mathrm{R}0} $0.5215224633$ {r}_{\mathrm{S}\mathrm{O}1} $0.00000000
    17$ {a}_{\mathrm{S}0} $0.34999999
    下载: 导出CSV

    靶核 APOMI SPOOA
    $ \chi _{\text{f}}^2 $ $ \chi _{\text{e}}^{2} $ $ {\chi ^2} $ $ \chi _{\text{f}}^{2} $ $ \chi _{\text{e}}^{2} $ $ {\chi ^2} $
    9Be 1.39 1.39 2.33 2.33
    10B 2.17 2.17 2.89 2.89
    11B 4.02 4.02 4.51 4.51
    13C 286.27 286.27 467.75 467.75
    16O 21.00 162.44 91.72 32.16 147.74 89.95
    24Mg 3.11 9.74 6.43 0.38 97.82 49.10
    27Al 17.60 17.60 16.52 16.52
    28Si 15.43 15.43 7.72 7.72
    44Ca 12.05 12.05 6.10 6.10
    58Ni 88.30 646.73 367.51 97.93 2046.43 1072.18
    60Ni 21.25 1404.33 712.79 35.38 3194.35 1614.86
    64Ni 43.28 43.28 42.01 42.01
    63Cu 5.06 5.06 4.42 4.42
    65Cu 3.90 3.90 5.24 5.24
    64Zn 120.98 120.98 579.60 579.60
    74Ge 2165.57 2165.57 2468.20 2468.20
    90Zr 498.31 498.31 69.48 69.48
    92Mo 10.45 10.45 8.45 8.45
    112Sn 74.11 74.11 88.79 88.79
    116Sn 403.03 403.03 1026.08 1026.08
    148Nd 42.07 42.07 21.85 21.85
    150Sm 9.20 9.20 5.31 5.31
    174Yb 12.57 12.57 9.34 9.34
    188Os 80.49 80.49 1422.2 1422.20
    192Os 13.57 13.57 3.84 3.84
    194Pt 26.65 26.65 30.66 30.66
    197Au 32.45 32.45 15.85 15.85
    208Pb 33.29 33.29 14.77 14.77
    总(以上多核综合) 120.56 361.85 181.87 193.12 772.73 326.79
    7Li 166.49 166.49 85.95 85.95
    12C 42.23 32018.88 16030.55 42.54 6563.20 3302.87
    120Sn 229.43 229.43 354.57 354.57
    14C 21.35 21.35 30.14 30.14
    61Ni 14.08 14.08 137.80 137.80
    下载: 导出CSV

    靶核 APOMHI(单核) SOOPA(单核)
    $ \chi _{\text{f}}^{2} $ $ \chi _{\text{e}}^{2} $ $ {\chi ^2} $ $ \chi _{\text{f}}^{2} $ $ \chi _{\text{e}}^{2} $ $ {\chi ^2} $
    7Li 5.79 5.79 5.86 5.86
    12C 84.23 1437.90 761.07 109.70 2501.96 1305.83
    120Sn 24.84 24.84 15.87 15.87
    下载: 导出CSV
  • [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    [40]

    [41]

    [42]

    [43]

    [44]

    [45]

    [46]

    [47]

    [48]

    [49]

    [50]

    [51]

    [52]

    [53]

    [54]

    [55]

    [56]

    [57]

    [58]

    [59]

    [60]

    [61]

    [62]

    [63]

    [64]

    [65]

    [66]

    [67]

    [68]

    [69]

    [70]

    [71]

    [72]

    [73]

    [74]

    [75]

    [76]

    [77]

    [78]

    [79]

    [80]

    [81]

    [82]

  • [1] 杜文青, 赵岫鸟. 208Pb的Lane自洽色散光学势. 必威体育下载 , 2025, 74(5): 052401. doi: 10.7498/aps.74.20241273
    [2] 侯艳洁, 胡春光, 张雷, 陈雪娇, 傅星, 胡小唐. 纳米有机薄膜有效导电层的反射光谱法研究. 必威体育下载 , 2016, 65(20): 200201. doi: 10.7498/aps.65.200201
    [3] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落. 必威体育下载 , 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [4] 游阳明, 王炳章, 王吉有. P原子的光学模型势与核极化修正. 必威体育下载 , 2012, 61(20): 202401. doi: 10.7498/aps.61.202401
    [5] 鲁公儒, 李新强, 李艳敏, 苏方. 代非普适Z'模型下中性Bs介子混合的研究. 必威体育下载 , 2012, 61(24): 241301. doi: 10.7498/aps.61.241301
    [6] 林青. 线性光学实现量子普适确切态识别. 必威体育下载 , 2009, 58(9): 5978-5982. doi: 10.7498/aps.58.5978
    [7] 过增元, 曹炳阳. 基于热质运动概念的普适导热定律. 必威体育下载 , 2008, 57(7): 4273-4281. doi: 10.7498/aps.57.4273
    [8] 李艳玲, 冯 健, 孟祥国, 梁宝龙. 量子比特的普适远程翻转和克隆. 必威体育下载 , 2007, 56(10): 5591-5596. doi: 10.7498/aps.56.5591
    [9] 李艳玲, 冯 健, 於亚飞. 量子纠缠态的普适远程克隆. 必威体育下载 , 2007, 56(12): 6797-6802. doi: 10.7498/aps.56.6797
    [10] 任浩, 顾德炜, 潘正权, 应和平. 自对耦无序分布随机链Potts模型的临界普适性研究. 必威体育下载 , 2004, 53(1): 265-271. doi: 10.7498/aps.53.265
    [11] 何茂刚, 刘志刚. 球共振声学法测量普适气体常数. 必威体育下载 , 2002, 51(5): 1004-1010. doi: 10.7498/aps.51.1004
    [12] 邓文基. 推广的EZ模型中的普适性行为. 必威体育下载 , 2002, 51(6): 1171-1174. doi: 10.7498/aps.51.1171
    [13] 张虎勇, 马余刚, 苏前敏, 沈文庆, 蔡翔舟, 方德清, 胡鹏云, 韩定定. 同位旋效应对中能重离子反应中轻粒子产物的影响. 必威体育下载 , 2001, 50(2): 193-197. doi: 10.7498/aps.50.193
    [14] 徐晓虎, 沈 剑. 铁电超晶格的一个唯象模型. 必威体育下载 , 1999, 48(11): 2142-2145. doi: 10.7498/aps.48.2142
    [15] 孙凤久. 算符光学中的表象变换及关联方程的普适解法. 必威体育下载 , 1989, 38(4): 653-658. doi: 10.7498/aps.38.653
    [16] 欧发, 蔡永强. 普适性的光学双稳及激光动力学方程和稳定性分析. 必威体育下载 , 1988, 37(2): 330-334. doi: 10.7498/aps.37.330
    [17] 吴自玉, 汪克林, 兰慧彬, 章正刚, 冼鼎昌. 赝标介子的唯象模型(Ⅱ)——电磁形状因子. 必威体育下载 , 1987, 36(12): 1618-1623. doi: 10.7498/aps.36.1618
    [18] 吴自玉;兰慧彬;汪克林;刘耀阳;章正刚;冼鼎昌. 赝标介子的唯象模型(I). 必威体育下载 , 1987, 36(8): 1048-1055. doi: 10.7498/aps.36.1048
    [19] 王光瑞, 陈式刚. 一维单峰映象中高周期序列的普适常数与普适函数. 必威体育下载 , 1986, 35(1): 58-65. doi: 10.7498/aps.35.58
    [20] 王光瑞, 张淑誉, 郝柏林. 强迫布鲁塞尔振子周期解的普适序列. 必威体育下载 , 1984, 33(7): 1008-1016. doi: 10.7498/aps.33.1008
计量
  • 文章访问数:  1317
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-15
  • 修回日期:  2025-07-08
  • 上网日期:  2025-07-24
  • 刊出日期:  2025-09-20

返回文章
返回