搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

    宋强, 孙晓兵, 刘晓, 提汝芳, 黄红莲, 王昊

    Exploring target imaging in underwater bubble group environment based on polarization information

    Song Qiang, Sun Xiao-Bing, Liu Xiao, Ti Ru-Fang, Huang Hong-Lian, Wang Hao
    PDF
    HTML
    导出引用
    • 水下光学成像是海底探索和目标识别的一个重要方式. 由于海浪、船舶尾流以及海洋生物游动与呼吸等原因, 存在着大量的气泡. 气泡群的光散射作用往往会使水下目标成像效果受限、难以识别, 并且一般的光学技术难以消除气泡对成像的影响. 针对上述问题, 本文先从理论上推导和仿真了入射光线在水下单气泡、气泡群中以及目标表面的光强和偏振信息的变化; 然后在构建了水下气泡实验平台的基础上探究了光源入射角度的改变以及成像波段的变化对气泡环境中目标偏振成像的影响; 研究了不同金属材质目标物的强度和偏振信息的变化趋势; 分析了水下目标在不同气泡群厚度条件下强度和偏振信息的变化趋势; 最后利用偏振特征提取与视觉信息保留的图像融合方法抑制气泡对水下目标成像的影响. 实验结果显示气泡群中目标成像会受到多种因素的影响, 利用偏振图像融合方法会使气泡群受到较好的抑制, 并提高了水下目标的清晰度.
      Underwater optical imaging is an important way to implement the seabed exploration and target recognition. There occur a lot of bubbles due to the sea wave, ship wake, marine creatures’ swimming and breathing. The underwater target imaging effect is often limited by light scattering effect of bubbles, so it is difficult to identify targets, and the general optical technology is difficult to eliminate the bubbles’ influence on imaging. In this article from the bubble theoretical derivation and the bubble simulation, we investigate the changing trend of target’s polarization information under the condition of different light incident angles in the underwater environment, data gathering, data processing and data analysis, by using the polarimetric image fusion method to suppress the influence of bubbles to build a complete target imaging research system under bubble group environment in line with the above several big aspects. According to the above problem, in this paper, the change of light intensity and polarization information of incoming light in underwater single bubble, bubble group and target’s surface are investigated; the target imaging in the bubble group environment with the change of light incident angle and polarization imaging band on the basis of the construction of experimental platform of underwater bubbles is explored; the change trends of strength and polarization information with different metal targets are studied; the change trends of strength and polarization information of underwater target under thickness of different bubble groups are analyzed; finally the underwater target images under the condition of different imaging resolutions and the using of fusion methods of polarization feature extraction and visual information of image to suppress the bubble influence on underwater target imaging are studied. The experimental results show that the target imaging under bubble group environment is influenced by many factors, and using polarimetric image fusion method can well weaken the bubble group’s influence on imaging, and improve the clarity of underwater target. In view of difficult problems about target identification existing in the high-density bubble group environment, we will use energy loss compensation or machine learning method to realize the target recognition and image restoration in the future.
          通信作者:孙晓兵,xbsun@aiofm.ac.cn
        • 基金项目:国家重点研发计划(批准号: 2016YFE0201400)、卫星应用共性关键技术项目(批准号: 30-Y20A010-9007-17/18)、高分辨重大专项项目(批准号: GFZX04011805)和中国科学院合肥研究院重点项目(批准号: Y73H9P1801)资助的课题
          Corresponding author:Sun Xiao-Bing,xbsun@aiofm.ac.cn
        • Funds:Project supported by the National Key R&D Program of China (Grant No. 2016YFE0201400), the Common Key Technology Project for Satellite Application of China (Grant No. 30-Y20A010-9007-17/18), the National High Resolution Major Special Project of China (Grant No. GFZX04011805), and the Key Project of Hefei Research Institute of Chinese Academy of Sciences (Grant No. Y73H9P1801)
        [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

      • 入射角度/(°) 水中气泡外界面的光强
        1 (A点) 2 (B点) 3 (C点) 4 (D点)
        5 0.0201 0.9603 0.0193 3.8662 × 10–4
        10 0.0201 0.9602 0.0193 3.9015 × 10–4
        15 0.0202 0.9599 0.0194 4.0710 × 10–4
        20 0.0207 0.9590 0.0198 4.6056 × 10–4
        25 0.0220 0.9567 0.0207 6.0192 × 10-4
        30 0.0251 0.9509 0.0230 9.5371 × 10-4
        35 0.0328 0.9364 0.0287 0.0019
        40 0.0542 0.8971 0.0436 0.0045
        45 0.1342 0.7570 0.0888 0.0158
        46 0.1761 0.6878 0.1062 0.0223
        47 0.2466 0.5786 0.1262 0.0334
        48 0.3945 0.3782 0.1353 0.0552
        48.75(临界值) 0.9372 0.0042 0.0039 0.0037
        下载: 导出CSV

        入射角度/(°) 水中气泡外界面的偏振度/%
        1 (A点) 2 (B点) 3 (C点) 4 (D点)
        5 2.04 0.08 1.96 4.00
        10 8.36 0.34 8.02 16.26
        15 19.46 0.80 18.69 36.81
        20 35.94 1.52 34.61 62.74
        25 57.60 2.59 55.84 85.83
        30 81.32 4.18 79.86 97.72
        35 98.20 6.66 97.95 99.98
        40 94.97 10.86 93.78 99.83
        45 63.94 19.63 50.67 86.56
        46 54.08 22.82 35.66 75.23
        47 42.40 27.23 17.15 55.51
        48 27.17 34.32 7.89 19.70
        48.75(临界值) 1.81 50.25 48.88 47.50
        下载: 导出CSV

        距离/m 信息熵 平均梯度 边缘强度
        0.5 5.9263 1.3499 12.7868
        0.6 5.9145 1.4647 14.2792
        0.7 5.9311 1.4946 14.6517
        0.8 6.0008 1.6703 16.5898
        0.9 5.9563 1.7850 17.8742
        1.0 5.9595 1.7225 17.2655
        下载: 导出CSV

        材质类别 图像类别 信息熵 平均梯度 边缘强度 方差
        目标1 原强度图 7.5541 2.6007 28.5980 4.9371 × 103
        融合结果图 5.3631 14.9552 146.1138 5.6631 × 103
        目标2 原强度图 6.0236 1.1077 11.9431 654.3071
        融合结果图 5.6483 17.6877 169.1962 5.7606 × 103
        目标3 原强度图 6.0648 4.1370 39.8161 508.8038
        融合结果图 5.6336 16.3178 156.5486 5.8342 × 103
        目标4 原强度图 6.0806 1.1309 12.2131 965.9536
        融合结果图 5.7785 17.5954 169.1398 5.7043 × 103
        目标5 原强度图 6.5571 1.4227 15.5275 1.0356 × 103
        融合结果图 5.7211 15.0098 146.1177 5.8561 × 103
        目标6 原强度图 6.2111 1.4299 15.6348 1.2907 × 103
        融合结果图 5.5173 17.9909 174.8208 6.0343 × 103
        下载: 导出CSV
      • [1]

        [2]

        [3]

        [4]

        [5]

        [6]

        [7]

        [8]

        [9]

        [10]

        [11]

        [12]

        [13]

        [14]

        [15]

        [16]

        [17]

        [18]

        [19]

        [20]

        [21]

        [22]

        [23]

      计量
      • 文章访问数:4910
      • PDF下载量:104
      • 被引次数:0
      出版历程
      • 收稿日期:2020-12-17
      • 修回日期:2021-03-06
      • 上网日期:2021-07-13
      • 刊出日期:2021-07-20

        返回文章
        返回