-
近年来, 高压强极端条件下的富氢化合物成为高温超导体研究的热点目标材料体系. 该领域目前取得了两个标志性重要进展, 先后发现了共价型H 3S富氢超导体( T c= 200 K)和以LaH 10( T c= 260 K, –13 ℃), YH 6, YH 9等为代表的一类氢笼合物结构的离子型富氢超导体, 先后刷新了超导温度的新纪录. 这些研究工作燃发了人们在高压下富氢化合物中发现室温超导体的希望. 本文重点介绍高压下富氢高温超导体的相关研究进展, 讨论富氢化合物产生高温超导电性的物理机理, 展望未来在富氢化合物中发现室温超导体的可能性并提出多元富氢化合物候选体系.In recent years, hydrogen-rich compounds under extremely high pressure have become the hot target materials for high-temperature superconductors. At present, two landmark progresses have been made in this field. Covalent H 3S hydrogen-rich superconductors ( T c= 200 K) and ionic hydrogen-rich superconductors with hydrogen-cage structure, such as LaH 10( T c= 260 K, –13 ℃), YH 6and YH 9, have been successively synthesized, setting a new record of superconducting temperature. These studies have given rise to the hope of discovering room-temperature superconductors in hydrogen-rich compounds under high pressure. This paper focuses on the progress of hydrogen-rich superconductors with high critical temperature under high pressure, discusses the physical mechanism of high-temperature superconductivity in hydrogen-rich compounds, provide an outlook on the possibility of discovering room-temperature superconductors in hydrogen-rich compounds in the future, and offer the candidate system for high superconductivity in multiple hydrogen-rich compounds.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83]
计量
- 文章访问数:12909
- PDF下载量:859
- 被引次数:0