搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

引用本文:
Citation:

陈海军, 盛浩文, 黄文豪, 吴彬琪, 赵天亮, 包小军
cstr: 32037.14.aps.74.20250720

Research on stability and decay properties of superheavy nuclei based on neural network method

CHEN Haijun, SHENG Haowen, HUANG Wenhao, WU Binqi, ZHAO Tianliang, BAO Xiaojun
cstr: 32037.14.aps.74.20250720
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 本文提出了一种用于计算原子核α衰变能($ Q_{\text{α}} $)的类液滴模型公式. 为了改进类液滴模型公式计算$ Q_{\text{α}} $的精度, 我们发展了神经网络结合类液滴模型公式的方法, 计算了原子核的$ Q_{\text{α}} $值. 通过分别对比类液滴模型计算的$ Q_{\text{α}} $值和神经网络结合类液滴模型公式的方法计算的$ Q_{\text{α}} $值与实验测量值的均方根偏差(RMSD), 发现类液滴模型计算的$ Q_{\text{α}} $值与实验值之间的RMSD从663.5 keV下降到神经网络结合类液滴模型公式的89.2 keV. 进而采用改进的$ Q_{\text{α}} $结合统一衰变公式计算了α衰变的半衰期. 虽然没有直接考虑原子核的壳效应, 但神经网络方法预测出了相应的超重核区双幻核的位置, 这与目前理论预测的超重双幻的位置非常接近, 从而给出了超重核区α衰变的稳定区域, 进一步证实了超重核稳定岛的存在.
    This study aims to develop a highly accurate method of predicting α-decay energy (Qα) of superheavy nuclei (SHN) and to identify the region of enhanced stability (the “island of stability”) based on α-decay properties. Improving the accuracy of Qα calculations is crucial for reliably predicting α-decay half-lives, which are essential for identifying newly synthesized superheavy elements.A modified liquid-drop model (LDM) formula for calculating Qα is proposed, eliminating explicit dependence on magic numbers to improve universality. However, the initial LDM formula alone yields a high root-mean-square deviation (RMSD) of 663.5 keV compared with experimental Qα values from the AME2016 database for 369 nuclei with Z ≥ 82. In order to significantly improve accuracy, a neural network (NN) method is combined with the LDM formula. For a feedforward backpropagation (BP) neural network with a 2-21-1 architecture (2 input neurons: proton number Z and mass number A; 21 hidden neurons; 1 output neuron), the correction term $ \text{δ}{{Q}}_{\text{α}} $ is developed. The network is trained using the Levenberg-Marquardt algorithm on a dataset of 369 nuclei (319 training, 50 validation). The final Qα prediction is given by $ Q_{\text{α}} ^{{\text{NN}}} = Q_{\text{α}} ^{{\text{Eq}}{\text{. (2)}}} + \delta Q_{\text{α}} ^{} $. The unified decay law (UDL) formula is then used to calculate α-decay half-lives (T1/2), with and without NN correction (denoted as UDL and UDLNN). The main results obtained are listed below.1) Improved Qα accuracy: The NN correction dramatically reduces the RMSD between calculated and experimental Qα values from 663.5 keV (LDM alone) to 89.2 keV.2) Capturing shell effects: Remarkably, although there is no explicit input of nuclear shell information, the NN-corrected Qα predictions clearly reproduce known shell structures, including the expected shell closure near N = 184 for superheavy nuclei. This is evident in the systematic lowering of predicted Qα values (implying increased stability) around the predicted doubly magic nucleus 298Fl (Z = 114, N = 184) and other known shell closures (e.g., N = 152, N = 162).3) Half-life predictions: Using the NN-corrected Qα in the UDL formula (UDLNN) further refines T1/2 predictions, reducing the RMSD from 0.631 (UDL alone) to 0.423. The method reliably reproduces experimental half-lives and shell-related features, such as a significant increase in T1/2 near shell closure (e.g. N = 126) and odd-A/odd-odd nuclei due to blocking effects.4) Validation: Predictions for recently synthesized neutron-deficient uranium isotopes 214,216,218U agree well with new experimental data of Qα and T1/2. Predictions for Fl isotopic chains also show good agreement with experimental trends.5) Stability island prediction: Maps of predicted Qα and T1/2 in the superheavy region consistently identify minimum value (indicating maximum stability) near the theoretically predicted doube magic nucleus 298Fl. A potential secondary stability center near Z = 126 and N = 228 is suggested, but further verification is needed. The longest predicted region of T1/2 coincides with the N = 184 shell closure.The conclusions drawn from the above findings are as follows. Integrating a neural network with a modified liquid-drop model formula provides a powerful and accurate method for predicting α-decay energies (Qα) of heavy and superheavy nuclei. The NN successfully learns and corrects complex shell effects implicitly, significantly improving prediction accuracy (RMSD reduced by ~85%). By combining the UDL formula, this method yields reliable α-decay half-lives. The results strongly confirm the existence and location of the predicted “island of stability” centered on the double magic nucleus 298Fl, providing valuable theoretical guidance for future experiments on the synthesis and identification of superheavy elements.
    [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    [40]

    [41]

    [42]

    [43]

    [44]

    [45]

    [46]

    [47]

    [48]

    [49]

    [50]

    [51]

    [52]

  • $ Q_{\text{α}}/\mathrm{M}\mathrm{e}\mathrm{V} $
    同位素文献[49](2)式NN文献[50]文献[20]
    214U8.69610.0548.8659.0088.45
    216U8.53210.0478.5878.5328.36
    218U8.7739.8978.7958.8018.51
    $ {T}_{1/2}/\mathrm{m}\mathrm{s} $
    同位素文献[49]UDLUDLNN
    214U0.52+0.63 –0.210.770.40
    216U2.25+0.95 –0.42.121.93
    218U0.65+0.08 –0.070.340.40
    下载: 导出CSV

    核素 $ Q_{\text{α}}^{\mathrm{L}\mathrm{Z}\mathrm{U}} $ $ Q_{\text{α}}^{\mathrm{E}\mathrm{q}. \left(2\right)} $ $ Q_{\text{α}}^{\mathrm{N}\mathrm{N}} $ UDL $ {\mathrm{U}\mathrm{D}\mathrm{L}}^{\mathrm{N}\mathrm{N}} $
    300120 13.05 9.83 13.03 –5.45 –5.59
    296118 11.89 9.85 11.75 –3.21 –3.35
    292116 10.64 10.34 10.08 –1.44 –1.57
    288114 9.82 10.92 10.03 0.03 –0.09
    284112 10.18 11.14 9.61 0.59 0.47
    280110 10.04 10.74 10.63 –2.88 –3.19
    302120 12.81 9.63 13.31 –6.05 –6.43
    298118 11.86 9.34 11.85 –3.48 –3.86
    294116 10.59 9.62 10.66 –1.12 –1.49
    290114 9.56 10.20 9.69 0.99 0.63
    286112 9.23 10.64 9.01 2.45 2.10
    282110 9.52 10.56 10.34 –2.16 –2.74
    304120 12.66 9.57 13.64 –6.73 –7.25
    300118 11.75 8.97 12.04 –3.94 –4.46
    296116 10.56 8.98 10.62 –1.03 –1.54
    292114 9.18 9.45 9.39 1.91 1.43
    288112 8.95 10.01 8.43 4.43 3.99
    284110 8.48 10.21 9.94 –1.09 –1.84
    306120 13.29 9.61 13.99 –7.41 –8.01
    302118 11.65 8.76 12.29 –4.54 –5.13
    298116 10.63 8.45 10.66 –1.17 –1.74
    294114 8.85 8.72 9.14 2.67 2.16
    290112 8.49 9.28 7.91 6.41 6.00
    286110 8.12 9.71 9.43 0.35 –0.51
    308120 13.07 9.73 14.32 –8.05 –8.68
    304118 12.36 8.69 12.59 –5.20 –5.82
    300116 10.57 8.08 10.77 –1.49 –2.06
    296114 8.53 8.07 8.97 3.21 2.77
    292112 8.30 8.52 7.49 8.17 7.87
    288110 7.68 9.06 8.86 2.16 1.12
    310120 11.61 9.85 14.60 –8.57 –9.21
    306118 12.61 8.73 12.89 –5.86 –6.46
    302116 11.37 7.85 10.93 –1.94 –2.44
    298114 8.32 7.53 8.89 3.47 3.18
    294112 7.96 7.78 7.20 9.44 9.26
    290110 7.56 8.33 8.26 4.24 2.91
    下载: 导出CSV
  • [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    [40]

    [41]

    [42]

    [43]

    [44]

    [45]

    [46]

    [47]

    [48]

    [49]

    [50]

    [51]

    [52]

  • [1] 武庆, 牛中明, 梁豪兆. 原子核质量不确定性对β衰变半衰期和中子俘获率的影响. 必威体育下载 , 2026, 75(1): . doi: 10.7498/aps.75.20251195
    [2] 王东东, 李鹏, 王之恒. 基于中子和质子分离能约束的神经网络对原子核质量的预测. 必威体育下载 , 2026, 75(2): . doi: 10.7498/aps.75.20251315
    [3] 田文静, 杨宗谕, 许敏, 龙婷, 何小雪, 柯锐, 杨硕苏, 余德良, 石中兵, 高喆. 光谱诊断中神经网络快速分析模型及外推方法. 必威体育下载 , 2025, 74(7): 078901. doi: 10.7498/aps.74.20241739
    [4] 魏凯文, 尚天帅, 田榕赫, 杨东, 李春娟, 陈军, 李剑, 黄小龙, 朱佳丽. 基于神经网络方法研究β衰变释放粒子的平均能量数据. 必威体育下载 , 2025, 74(18): 182901. doi: 10.7498/aps.74.20250655
    [5] 邢凤竹, 乐先凯, 王楠, 王艳召. Z = 118—120超重核α衰变性质的研究. 必威体育下载 , 2025, 74(11): 112301. doi: 10.7498/aps.74.20240907
    [6] 张凯林, 韩胜贤, 岳生俊, 刘作业, 胡碧涛. 强激光场对原子核α衰变的影响. 必威体育下载 , 2024, 73(6): 062101. doi: 10.7498/aps.73.20231627
    [7] 焦宝宝. 基于原子核密度的核电荷半径新关系. 必威体育下载 , 2023, 72(11): 112101. doi: 10.7498/aps.72.20230126
    [8] 方波浪, 王建国, 冯国斌. 基于物理信息神经网络的光斑质心计算. 必威体育下载 , 2022, 71(20): 200601. doi: 10.7498/aps.71.20220670
    [9] 魏德志, 陈福集, 郑小雪. 基于混沌理论和改进径向基函数神经网络的网络舆情预测方法. 必威体育下载 , 2015, 64(11): 110503. doi: 10.7498/aps.64.110503
    [10] 李欢, 王友国. 一类非线性神经网络中噪声改善信息传输. 必威体育下载 , 2014, 63(12): 120506. doi: 10.7498/aps.63.120506
    [11] 陈铁明, 蒋融融. 混沌映射和神经网络互扰的新型复合流密码. 必威体育下载 , 2013, 62(4): 040301. doi: 10.7498/aps.62.040301
    [12] 张蔚泓, 牛中明, 王枫, 龚孝波, 孙保华. 宇宙核时钟不确定度的研究. 必威体育下载 , 2012, 61(11): 112601. doi: 10.7498/aps.61.112601
    [13] 李华青, 廖晓峰, 黄宏宇. 基于神经网络和滑模控制的不确定混沌系统同步. 必威体育下载 , 2011, 60(2): 020512. doi: 10.7498/aps.60.020512
    [14] 赵海全, 张家树. 混沌通信系统中非线性信道的自适应组合神经网络均衡. 必威体育下载 , 2008, 57(7): 3996-4006. doi: 10.7498/aps.57.3996
    [15] 王永生, 孙 瑾, 王昌金, 范洪达. 变参数混沌时间序列的神经网络预测研究. 必威体育下载 , 2008, 57(10): 6120-6131. doi: 10.7498/aps.57.6120
    [16] 黄明辉, 甘再国, 范红梅, 苏朋源, 马 龙, 周小红, 李君清. 超重核合成时的驱动势与热熔合反应截面. 必威体育下载 , 2008, 57(3): 1569-1575. doi: 10.7498/aps.57.1569
    [17] 王瑞敏, 赵 鸿. 神经元传输函数对人工神经网络动力学特性的影响. 必威体育下载 , 2007, 56(2): 730-739. doi: 10.7498/aps.56.730
    [18] 王耀南, 谭 文. 混沌系统的遗传神经网络控制. 必威体育下载 , 2003, 52(11): 2723-2728. doi: 10.7498/aps.52.2723
    [19] 谭文, 王耀南, 刘祖润, 周少武. 非线性系统混沌运动的神经网络控制. 必威体育下载 , 2002, 51(11): 2463-2466. doi: 10.7498/aps.51.2463
    [20] 神经网络的自适应删剪学习算法及其应用. 必威体育下载 , 2001, 50(4): 674-681. doi: 10.7498/aps.50.674
计量
  • 文章访问数:  1491
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-04
  • 修回日期:  2025-08-07
  • 上网日期:  2025-08-11
  • 刊出日期:  2025-10-05

返回文章
返回