搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

引用本文:
Citation:

吴芳菲, 施皓天, 戚晓秋, 左娅妮
cstr: 32037.14.aps.74.20250972

High-precision calculation of dynamic electric dipole polarizability of $^{11}\mathrm{Be}^{2+}$ ion

WU Fangfei, SHI Haotian, QI Xiaoqiu, ZUO Yani
cstr: 32037.14.aps.74.20250972
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 作为典型的单中子晕核, 11Be在原子及核物理研究中具有独特的意义. 本文针对类氦11Be2+离子, 采用相对论组态相互作用方法, 高精度计算了主量子数最高达$n = 8$的$n^{3}{\mathrm{S}}_1$和$n^{3}{\mathrm{P}}_{0,1,2}$态的能量与波函数. 通过将有限核质量修正算符直接引入Dirac-Coulomb-Breit哈密顿量, 使计算能够同时考虑相对论效应和质量相关修正. 基于计算的高精度能量与波函数, 本文进一步确定了$k^3{\mathrm{S}}_1 \rightarrow m^3{\mathrm{P}}_{0,1,2}$ ($k \leqslant 5$, $m \leqslant 8$)电偶极跃迁的振子强度, 精度达3—6位有效数字. 此外, 利用态求和法计算了$n'^3{\mathrm{S}}_1$ ($n' \leqslant 5$)态在宽光子频率范围内的动力学电偶极极化率, 在远离共振位置处结果最高可达10–6精度水平. 上述高精度计算结果为11Be2+离子在高精度测量中涉及的斯塔克频移评估以及光与物质相互作用的模拟等方面提供了重要的理论依据和关键输入参数.
    11Be, as a typical one-neutron halo nucleus, is of unique significance in studying atomic and nuclear physics. The nucleus comprises a tightly bound 10Be core and a loosely bound valence neutron, forming an exotic nuclear configuration that is significantly different from traditional nuclear configuration in both magnetic and charge radii, thereby establishing a unique platform for investigating nuclear-electron interactions. In this study, we focus on the helium-like 11Be2+ ion and systematically calculate the energies and wavefunctions of the $n^{3}S_1$ and $n^{3}{\mathrm{P}}_{0,1,2}$ states up to principal quantum number $n=8$ by employing the relativistic configuration interaction (RCI) method combined with high-order B-spline basis functions. By directly incorporating the nuclear mass shift operator $H_{\mathrm{M}}$ into the Dirac-Coulomb-Breit (DCB) Hamiltonian, we comprehensively investigate the relativistic effects, Breit interactions, and nuclear mass corrections for 11Be2+. The results demonstrate that the energies of states with $n\leqslant 5$ converge to eight significant digits, showing excellent agreement with existing NRQED values, such as $-9.29871191(5)$ a.u. for the $^{3}{\mathrm{S}}_1$ state. The nuclear mass corrections are on the order of 10–4 a.u. and decrease with principal quantum number increasing.By using the high-precision wavefunctions, the electric dipole oscillator strengths for $k^3{\mathrm{S}}_1 \rightarrow m^3{\mathrm{P}}_{0,1,2}$ transitions ($k \leqslant 5$, $m \leqslant 8$) are determined, resulting in low-lying excited states ($m\leqslant4$) accurate to six significant digits, thereby providing reliable data for evaluating transition probabilities and radiative lifetimes. Furthermore, the dynamic electric dipole polarizabilities of the $n'^3{\mathrm{S}}_1$ ($n' \leqslant 5$) states are calculated using the sum-over-states method. The static polarizabilities exhibit a significant increase with principal quantum number increasing. For the $J=1$ state, the difference in polarizability between the magnetic sublevels $M_J=0$ and $M_J=\pm1$ is three times the tensor polarizability. In the calculation of dynamic polarizabilities, the precision reaches 10–6 in non-resonant regions, whereas achieving the same accuracy near resonance requires higher energy precision. These high-precision computational results provide crucial theoretical foundations and key input parameters for evaluating Stark shifts in high-precision measurements, simulating light-matter interactions, and investigating single-neutron halo nuclear structures.
      通信作者: 戚晓秋, xqqi@zstu.edu.cn ; 左娅妮, zuoyanizz@163.com
    • 基金项目: 国家自然科学基金(批准号: 12204412, 12004124)和国家市场监督管理总局重点实验室(时间频率与重力计量基准) (批准号: AKYKF2501)资助的课题.
      Corresponding author: QI Xiaoqiu, xqqi@zstu.edu.cn ; ZUO Yani, zuoyanizz@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12204412, 12004124) and the Key Laboratory of State Administration for Market Regulation (Time Frequency and Gravity Primary Standard) (Grant No. AKYKF2501).
    [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

  • (N, $ \ell_m $) $ 2 ^3\mathrm{S}_1 $ $ 3 ^3\mathrm{S}_1 $ $ 4 ^3\mathrm{S}_1 $ $ 5 ^3\mathrm{S}_1 $ $ 6 ^3\mathrm{S}_1 $ $ 7 ^3\mathrm{S}_1 $ $ 8 ^3\mathrm{S}_1 $
    (40, 8) –9.2987118781 –8.5483475380 –8.3017888508 –8.1909936393 –8.1318566822 –8.0966153793 –8.0739367761
    (40, 9) –9.2987119119 –8.5483475470 –8.3017888543 –8.1909936410 –8.1318566832 –8.0966153799 –8.0739367765
    (40, 10) –9.2987118673 –8.5483475442 –8.3017888537 –8.1909936408 –8.1318566831 –8.0966153798 –8.0739367764
    (45, 10) –9.298 711 9028 –8.5483475516 –8.3017888542 –8.1909936238 –8.1318565642 –8.0966147583 –8.0739335599
    (50, 10) –9.2987118649 –8.5483475498 –8.3017888539 –8.1909936224 –8.1318565546 –8.0966147052 –8.0739332679
    Extrap. –9.29871191(5) –8.54834755(2) –8.30178885(1) –8.19099362(3) –8.1318566(1) –8.0966147(4) –8.073933(4)
    –9.298711181[21]
    Be2+ –9.29917621(4)[29] –8.54877343(4)[29] –8.30220222(4)[29] –8.19140139(4)[29] –8.1322613(2) –8.0970178(6) –8.074334(5)
    下载: 导出CSV

    n $ ^3{\mathrm{P}}_0 $(11Be2+) $ ^3{\mathrm{P}}_0 $(Be2+) $ ^3{\mathrm{P}}_1 $(11Be2+) $ ^3{\mathrm{P}}_1 $(Be2+) $ ^3{\mathrm{P}}_2 $(11Be2+) $ ^3{\mathrm{P}}_2 $(Be2+)
    2 –9.17627904(4) –9.176 700 64(4)[29] –9.17633162(4) –9.17675322(4)[29] –9.17626402(4) –9.17668561(4)[29]
    –9.176278322[21] –9.176330730[21] –9.176263355[21]
    3 –8.51591623(4) –8.51633141(4)[29] –8.51592914(4) –8.51634433(4)[29] –8.51590908(4) –8.51632431(4)[29]
    4 –8.28867151(4) –8.28908063(4)[29] –8.28867658(4) –8.28908570(4)[29] –8.28866814(4) –8.28907727(4)[29]
    5 –8.18442245(4) –8.18482810(4)[29] –8.18442495(4) –8.18483061(4)[29] –8.18442064(4) –8.18482630(4)[29]
    6 –8.12810385(8) –8.12850744(8) –8.12810527(8) –8.12850886(8) –8.12810278(8) –8.12850637(8)
    7 –8.09427236(8) –8.09467469(8) –8.09427324(8) –8.09467556(8) –8.0942717(1) –8.0946740(1)
    8 –8.0723741(4) –8.0727757(4) –8.0723745(4) –8.0727762(4) –8.072373(4) –8.0727752(4)
    下载: 导出CSV

    $ 2 ^3{\mathrm{S}}_1 $ $ 3 ^3{\mathrm{S}}_1 $ $ 4 ^3{\mathrm{S}}_1 $ $ 5 ^3{\mathrm{S}}_1 $
    $ 2^3{\mathrm{P}}_0 $ 2.372207(2)[–2] 9.872733(2)[–3] 1.928282(2)[–3] 7.371365(4)[–4]
    $ 2^3{\mathrm{P}}_1 $ 7.113520(4)[–2] 2.959444(1)[–2] 5.780477(2)[–3] 2.209758(2)[–3]
    $ 2^3{\mathrm{P}}_2 $ 1.186353(6)[–1] 4.935354(6)[–2] 9.638898(6)[–3] 3.684637(4)[–3]
    $ 3^3{\mathrm{P}}_0 $ 2.8034387(2)[–2] 3.9595500(4)[–2] 2.1969329(1)[–2] 4.408759(2)[–3]
    $ 3^3{\mathrm{P}}_1 $ 8.412570(1)[–2] 1.1872683(2)[–1] 6.5866197(8)[–2] 1.3218516(4)[–2]
    $ 3^3{\mathrm{P}}_2 $ 1.4016114(8)[–1] 1.980174(5)[–1] 1.0983887(8)[–1] 2.204119(1)[–2]
    $ 4^3{\mathrm{P}}_0 $ 7.9394418(4)[–3] 2.9307965(4)[–2] 5.442867(2)[–2] 3.485147(2)[–2]
    $ 4^3{\mathrm{P}}_1 $ 2.3822715(1)[–2] 8.794741(2)[–2] 1.6320086(4)[–2] 1.0449598(8)[–1]
    $ 4^3{\mathrm{P}}_2 $ 3.969574(2)[–2] 1.465153(2)[–1] 2.721986(4)[–1] 1.742527(2)[–1]
    $ 5^3{\mathrm{P}}_0 $ 3.436979(4)[–3] 8.804208(4)[–3] 3.165094(4)[–2] 6.89132(2)[–2]
    $ 5^3{\mathrm{P}}_1 $ 1.031254(1)[–2] 2.641763(1)[–2] 9.49775(1)[–2] 2.066303(6)[–1]
    $ 5^3{\mathrm{P}}_2 $ 1.718454(2)[–2] 4.401593(4)[–2] 1.582203(2)[–1] 3.446360(4)[–1]
    $ 6^3{\mathrm{P}}_0 $ 1.822257(8)[–3] 3.98831(2)[–3] 9.67922(2)[–3] 3.44362(4)[–2]
    $ 6^3{\mathrm{P}}_1 $ 5.46755(4)[–3] 1.196685(8)[–2] 2.904307(4)[–2] 1.03336(2)[–1]
    $ 6^3{\mathrm{P}}_2 $ 9.11117(6)[–3] 1.99396(1)[–2] 4.838841(4)[–2] 1.72139(1)[–1]
    $ 7^3{\mathrm{P}}_0 $ 1.08963(8)[–3] 2.1925(2)[–3] 4.4708(2)[–3] 1.057500(8)[–2]
    $ 7^3{\mathrm{P}}_1 $ 3.2693(2)[–3] 6.5784(6)[–3] 1.34147(8)[–2] 3.17309(6)[–2]
    $ 7^3{\mathrm{P}}_2 $ 5.4481(6)[–3] 1.0961(1)[–2] 2.2351(1)[–2] 5.2866(2)[–2]
    $ 8^3{\mathrm{P}}_0 $ 7.067(8)[–4] 1.350(1)[–3] 2.503(4)[–3] 4.926(4)[–3]
    $ 8^3P_1 $ 2.1182(4)[–3] 4.051(4)[–3] 7.510(4)[–3] 1.479(2)[–3]
    $ 8^3{\mathrm{P}}_2 $ 3.530(2)[–3] 6.750(2)[–3] 1.252(2)[–2] 2.464(2)[–2]
    下载: 导出CSV

    (N, $ \ell_m $) $ 2\, ^3 {\mathrm{S}}_1(M_{J}=0/\pm 1) $ $ 3\, ^3 {\mathrm{S}}_1(M_{J}=0/\pm 1) $ $ 4\, ^3 {\mathrm{S}}_1(M_{J}=0/\pm 1) $ $ 5\, ^3 {\mathrm{S}}_1(M_{J}=0/\pm 1) $
    (40, 8) 14.888529/14.891730 343.889786/343.954302 2868.6928/2869.2072 14424.502/14427.048
    (40, 9) 14.888533/14.891735 343.889940/343.954462 2868.6941/2869.2085 14424.508/14427.054
    (40, 10) 14.888538/14.891742 343.890034/343.954574 2868.6946/2869.2092 14424.510/14427.058
    (45, 10) 14.888561/14.891758 343.890263/343.954742 2868.6970/2869.2111 14424.544/14427.088
    (50, 10) 14.888528/14.891735 343.889933/343.954502 2868.6944/2869.2092 14424.531/14427.080
    Extrap. 14.88858(6)/14.89177(4) 343.8904(7)/343.9548(5) 2868.697(5)/2869.211(4) 14424.54(4)/14427.08(4)
    下载: 导出CSV

    ω/a.u. $ 2 ^3\mathrm{S}_1(M_{J}=0/\pm 1) $ $ 3 ^3\mathrm{S}_1(M_{J}=0/\pm 1) $ $ 4 ^3\mathrm{S}_1(M_{J}=0/\pm 1) $ $ 5 ^3\mathrm{S}_1(M_{J}=0/\pm 1) $
    0.02 15.27929(3)/15.28277(2) 551.7125(9)/551.9742(7) –2126.974(5)/–2125.537(4) –1666.090(2)/–1665.446(2)
    0.03 15.79888(3)/15.80274(3) 2348.47(3)/2355.50(2) –649.2535(8)/–648.9762(6) –638.422(2)/–638.155(2)
    0.04 16.59145(4)/16.59592(3) –645.258(3)/–644.484(2) –317.9701(4)/–317.8436(3) –284.578(3)/–284.410(3)
    0.045 17.11436(4)/17.11926(3) –361.0677(9)/–360.7746(7) –238.3984(3)/–238.3025(2) –171.451(4)/–171.301(4)
    0.05 17.74088(4)/17.74631(3) –240.8547(5)/–240.6914(4) –183.3957(2)/–183.3195(2) –60.173(6)/–60.025(7)
    0.055 18.49116(5)/18.49728(4) –175.3147(3)/–175.2190(3) –143.3993(2)/–143.3365(2) 102.35(2)/102.53(2)
    0.06 19.39221(5)/19.39919(4) –134.5050(2)/–134.4378(2) –113.0578(2)/–113.00454(9) 672.43(7)/672.93(7)
    0.065 20.48070(6)/20.48879(5) –106.9053(2)/–106.8553(2) –89.1419(1)/–89.09557(8) –1326.21(8)/–1325.85(8)
    0.07 21.80763(7)/21.81719(6) –87.1505(2)/–87.11157(9) –69.56520(9)/–69.52388(6) –490.156(5)/–490.103(5)
    0.075 23.44577(9)/23.45730(7) –72.41078(9)/–72.37938(7) –52.87530(8)/–52.83766(5) –338.839(2)/–338.785(2)
    0.08 25.5025(2)/25.51673(8) –61.05605(8)/–61.03007(6) –37.95614(6)/–37.92106(5) –278.694(3)/–278.627(3)
    0.085 28.1427(2)/28.1609(1) –52.08358(7)/–52.06161(5) –23.81351(7)/–23.77994(6) –257.546(6)/–257.452(6)
    0.09 31.6335(2)/31.6576(2) –44.84405(6)/–44.82516(4) –9.35342(8)/–9.32025(7) –277.90(2)/–277.68(2)
    0.095 36.4367(3)/36.4702(2) –38.89943(5)/–38.88295(4) 6.9806(1)/7.01487(9) –432.7(2)/–431.7(2)
    0.10 43.4261(4)/43.4760(3) –33.94404(5)/–33.92949(4) 28.0790(2)/28.1170(2) 441.99(6)/442.72(6)
    0.11 74.483(2)/74.6458(9) –26.18144(4)/–26.16973(3) 131.7548(7)/131.8358(8) 32.52(3)/32.53(3)
    0.12 361.19(4)/365.51(3) –20.39655(3)/–20.38682(2) –486.980(5)/–486.775(5) –146(1)/–146(1)
    0.13 –111.268(4)/–110.830(3) –15.91658(3)/–15.90826(2) –116.4122(2)/–116.4040(2) –8.5(2)/–8.4(2)
    0.14 –45.6790(6)/–45.5965(5) –12.32375(2)/–12.31647(2) –68.80539(6)/–68.79816(6)
    0.15 –27.7762(3)/–27.7422(2) –9.34226(2)/–9.33576(2) –46.6878(2)/–46.6794(2)
    0.16 –19.4618(2)/–19.4433(1) –6.77800(2)/–6.77207(2) –28.4859(4)/–28.4748(4)
    0.17 –14.68262(9)/–14.67079(7) –4.48302(2)/–4.47750(2) 27.568(5)/27.602(5)
    0.18 –11.59257(6)/–11.58420(5) –2.33146(2)/–2.32622(1) –76.562(2)/–76.550(2)
    0.19 –9.43904(5)/–9.43342(4) –0.19850(2)/–0.193392(9) –51.2307(7)/–51.2156(7)
    0.20 –7.85783(4)/–7.85328(3) 2.06578(2)/2.070910(9) –47.611(3)/–47.577(3)
    0.22 –5.70307(3)/–5.70005(2) 8.05211(2)/8.058053(9) 56.557(6)/56.635(6)
    0.24 –4.31412(2)/–4.31196(2) 22.40003(2)/22.41095(2) 2.70(5)/2.70(5)
    0.26 –3.35158(2)/–3.349930(9) –1580.80(4)/–1566.25(4) –5.1(6)/–5.0(6)
    0.28 –2.64914(1)/–2.647830(7) –26.249939(7)/–26.248577(8)
    0.30 –2.115953(8)/–2.114877(6) –12.800496(3)/–12.799903(3)
    0.32 –1.698284(7)/–1.697376(5) –7.278323(3)/–7.277525(3)
    0.34 –1.362367(6)/–1.361585(4) –2.571976(7)/–2.570642(7)
    0.36 –1.085927(5)/–1.085241(4) 22.4313(3)/22.4461(3)
    0.38 –0.853663(4)/–0.853051(3) –10.49399(3)/–10.49349(3)
    0.40 –0.654682(4)/–0.654128(3) –4.67869(3)/–4.67806(3)
    下载: 导出CSV
  • [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

  • [1] 张永慧, 史庭云, 唐丽艳. B-样条基组方法在少电子原子结构精密计算中的应用. 必威体育下载 , 2025, 74(8): 083101. doi: 10.7498/aps.74.20241728
    [2] 魏远飞, 唐志明, 李承斌, 黄学人. Al+光钟态“幻零”波长的理论计算. 必威体育下载 , 2024, 73(10): 103103. doi: 10.7498/aps.73.20240177
    [3] 杨帅, 唐泽波, 杨驰, 查王妹. 相对论重离子碰撞中光子-光子相互作用的碰撞参数依赖性. 必威体育下载 , 2023, 72(20): 201201. doi: 10.7498/aps.72.20230948
    [4] 李曜均, 岳东宁, 邓彦卿, 赵旭, 魏文青, 葛绪雷, 远晓辉, 刘峰, 陈黎明. 相对论强激光与近临界密度等离子体相互作用的质子成像. 必威体育下载 , 2019, 68(15): 155201. doi: 10.7498/aps.68.20190610
    [5] 余庚华, 颜辉, 高当丽, 赵朋义, 刘鸿, 朱晓玲, 杨维. 相对论多组态相互作用方法计算Mg+离子同位素位移. 必威体育下载 , 2018, 67(1): 013101. doi: 10.7498/aps.67.20171817
    [6] 张陈俊, 王养丽, 陈朝康. InCn+(n=110)团簇的密度泛函理论研究. 必威体育下载 , 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [7] 陈泽章. 太赫兹波段液晶分子极化率的理论研究. 必威体育下载 , 2016, 65(14): 143101. doi: 10.7498/aps.65.143101
    [8] 徐胜楠, 刘天元, 孙美娇, 李硕, 房文汇, 孙成林, 里佐威. 溶剂效应对β胡萝卜素分子电子振动耦合的影响. 必威体育下载 , 2014, 63(16): 167801. doi: 10.7498/aps.63.167801
    [9] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究. 必威体育下载 , 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [10] 杨建会, 范强, 张建平. 类氖等电子系列离子基态的双电子复合速率系数研究. 必威体育下载 , 2012, 61(19): 193101. doi: 10.7498/aps.61.193101
    [11] 郭钊, 陆斌, 蒋雪, 赵纪军. 幻数尺寸Li-n-1,Lin,Li+ n+1(n=20,40)团簇的几何结构、电子与光学性质的第一性原理研究. 必威体育下载 , 2011, 60(1): 013601. doi: 10.7498/aps.60.013601
    [12] 朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂. Cs 39D态Rydberg原子Stark光谱的实验研究. 必威体育下载 , 2010, 59(4): 2401-2405. doi: 10.7498/aps.59.2401
    [13] 青波, 程诚, 高翔, 张小乐, 李家明. 全相对论多组态原子结构及物理量的精密计算——构建准完备基以及组态相互作用. 必威体育下载 , 2010, 59(7): 4547-4555. doi: 10.7498/aps.59.4547
    [14] 姚建明, 杨翀. AB效应对自旋多端输运的影响. 必威体育下载 , 2009, 58(5): 3390-3396. doi: 10.7498/aps.58.3390
    [15] 刘玉孝, 赵振华, 王永强, 陈玉红. 氦原子和类氦离子基态能量的变分计算及相对论修正. 必威体育下载 , 2005, 54(6): 2620-2624. doi: 10.7498/aps.54.2620
    [16] 掌蕴东, 孙旭涛, 何竹松. 激光感生色散光学滤波理论. 必威体育下载 , 2005, 54(7): 3000-3004. doi: 10.7498/aps.54.3000
    [17] 马晓光, 孙卫国, 程延松. 高密度体系光电离截面新表达式的应用. 必威体育下载 , 2005, 54(3): 1149-1155. doi: 10.7498/aps.54.1149
    [18] 韩定安, 郭 弘, 孙 辉, 白艳锋. 三能级Λ-系统探测光的频率调制效应研究. 必威体育下载 , 2004, 53(6): 1793-1798. doi: 10.7498/aps.53.1793
    [19] 蔡 理, 马西奎, 王 森. 量子细胞神经网络的超混沌特性研究. 必威体育下载 , 2003, 52(12): 3002-3006. doi: 10.7498/aps.52.3002
    [20] 韩利红, 芶秉聪, 王菲. 类铍BⅡ离子激发态的相对论能量和精细结构. 必威体育下载 , 2001, 50(9): 1681-1684. doi: 10.7498/aps.50.1681
计量
  • 文章访问数:  1537
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-21
  • 修回日期:  2025-08-25
  • 上网日期:  2025-09-02
  • 刊出日期:  2025-11-05

返回文章
返回