-
在空间核反应堆系统、深空探测器电源模块以及运载火箭推进装置等极端辐射环境中, 高压大功率器件展现出重要的应用价值. 碳化硅金属氧化物半导体场效应晶体管(SiC MOSFET)具备耐高压、耐高温和低导通损耗等优点, 能够使宇航电源的效率得到进一步提升. 因此, SiC功率MOSFET空间辐射效应和抗辐射加固技术迅速成为行业的研究热点. 首先, 本文回顾了SiC功率MOSFET器件的发展历程, 分析了从平面栅技术到沟槽栅技术的演变过程, 并对未来新型SiC功率MOSFET技术进行了展望. 其次, 针对SiC功率MOSFET在复杂空间环境下面临的辐射损伤问题, 着重梳理了目前国内外关于重离子辐照SiC功率MOSFET引起的单粒子烧毁与单粒子栅穿的相关研究成果. 最后, 基于SiC功率MOSFET单粒子辐射损伤机制分析, 总结了目前SiC功率MOSFET抗辐射加固技术的研究进展, 为研究SiC功率MOSFET单粒子效应损伤机制以及改进其抗辐射加固技术提供参考.
-
关键词:
- SiC功率金属氧化物半导体场效应晶体管 /
- 单粒子烧毁 /
- 单粒子栅穿 /
- 辐射损伤机制 /
- 抗辐射加固
In extreme radiation environments, such as space nuclear reactor systems, deep-space probe power modules, and launch vehicle propulsion systems, high-voltage and high-power devices demonstrate significant practical value. Silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) possess advantages including high breakdown voltage, thermal stability, and low on-state resistance, enabling further improvements in aerospace power supply efficiency. Therefore, research on radiation effects and radiation-hardening techniques for SiC power MOSFETs has rapidly emerged as a critical focus in the industry. Firstly, this paper reviews the developmental evolution of SiC power MOSFETs, analyzes the necessity of transitioning from planar gate to trench-gate architectures, and provides future prospects for advanced SiC power MOSFET technologies. Secondly, it systematically compiles current research achievements in single event burnout (SEB) and single event gate rupture (SEGR) caused by heavy ion irradiation in SiC power MOSFETs. Finally, based on a mechanistic analysis of radiation-induced single event damage in SiC power MOSFETs, this study summarizes recent progress of radiation-hardening technologies, aiming to provide valuable ideas for understanding radiation induced failure mechanisms and enhancing the radiation tolerance of SiC power MOSFETs.-
Keywords:
- SiC power metal-oxide-semiconductor field-effect transistors /
- single event burnout /
- single event gate rupture /
- radiation damage mechanism /
- radiation hardening
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] -
器件设计 研究类型 LET/(MeV·cm2·mg–1) VSEB/V 文献 [1200 V] VDMOSFET Experiment 35.8 350 [6] [1200 V] VDMOSFET Experiment 7.7—49.1 580—700 [46] [1200 V] VDMOSFET Experiment 0.26—118 200—600 [49] [1200 V] VDMOSFET Experiment 70.2 800 [51] [1200 V] VDMOSFET Experiment 10—65 500—600 [52] [1200 V] VDMOSFET Experiment 81.3 400 [53] [1200 V] VDMOSFET Experiment 38.85 400 [54] 粒子 LET
/(MeV·cm2·mg–1)Microdose
/VSELC
/VSEGR
/VXe 62.5 40 70 120 Kr 32.4 70 120 400 Ni 20.4 90 120 — Fe 14.53 430 450 500 Ca 13.5 520 530 550 器件设计 研究类型 LET/(MeV·cm2·mg–1) VSEB/V 文献 [650 V] DTMOSFET Simulation 151 70 [55] [1200 V] DTMOSFET Experiment 81.3 <504 [56] [1512 V] DTMOSFET Simulation 15.1 597 [58] [900 V] TB-QVDMOSFET Simulation 75.5 478 [64] [1260 V] CoolSiC Trench MOSFET Simulation 67.95 600 [65] [1200 V] TGMOSFET Experiment 75 500 [66] 器件类型 加固方法 加固机理 文献 NITG-MOSFET 多层缓冲层(MBLs) MBLs可以降低N–漂移层与N+衬底界面处的峰值电场强度,
抑制二次击穿.[83] IM-DTMOSFET p型源极缓冲层(P-SBL)和
多缓冲层(MBLs)P-SBL和MBLs可以缓解高能重离子撞击后瞬态脉冲
引起的器件局部温度升高.[93] STG-MOSFET 源接触处P+屏蔽区和
高K介质材料(HfO2)源接触处P+屏蔽区可抑制寄生BJT导通, 高K介电材料
可降低栅氧化层的最大电场强度.[98] HEC-MOSFET JFET中间区域P+
柱和电流扩散层(CSL)P+柱能去除JFET区域周围积累的多余空穴, CSL可以扩大
能量耗散面积以及在高VDS偏置下提供良好的夹断效果.[99] DGF-UMOSFET 接地和浮空p-埋层 p-埋层有效降低栅极氧化界面和衬底界面处的晶格最高温度. [100] DT-HJDUMOSFET 集成异质结二极管(HJD) HJD结构能抑制寄生BJT的导通并且使产生的空穴电流
可以有效地泄漏, 提高SEB性能.[101] SH-MOSFET 源极侧边多晶硅/
碳化硅异质结源极侧边poly-Si区域不仅充当空穴放电的通道, 降低氧化层
下方积累的空穴浓度, 增强SEGR电阻, 还能有效降低
寄生BJT的电流增益, 改善SEB性能.[102] -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102]
计量
- 文章访问数: 989
- PDF下载量: 51
- 被引次数: 0