[1] |
Wang Yu, Wu Yi-Hao, Li Yi-Pu, Lu Kai-Xiang, Yi Tian-Cheng, Zhang Yun-Bo.Squeezing and evolution of single particle by frequency jumping in two-dimensional rotating harmonic. Acta Physica Sinica, 2024, 73(7): 074202.doi:10.7498/aps.73.20231929 |
[2] |
Cheng Zheng-Fu, Zheng Rui-Lun.Influence of the anharmonic vibration on the Young modulus and the phonon frequency of the graphene. Acta Physica Sinica, 2016, 65(10): 104701.doi:10.7498/aps.65.104701 |
[3] |
Wen Wen, Li Hui-Jun, Chen Bing-Yan.Evolution of interference patterns of strongly interacting Fermi gases in a harmonic trap. Acta Physica Sinica, 2012, 61(22): 220306.doi:10.7498/aps.61.220306 |
[4] |
Zhu Si-Feng, Liu Fang, Chai Zheng-Yi, Qin Yu-Tao, Wu Jian-She.Simple harmonic oscillator immune optimization algorithm for solving vertical handoff decision problem in heterogeneous wireless network. Acta Physica Sinica, 2012, 61(9): 096401.doi:10.7498/aps.61.096401 |
[5] |
Zhang Liang-Ying, Jin Guo-Xiang, Cao Li.Stochastic resonance of linear harmonic oscillator subjected to simple harmonic force with frequency fluctuation. Acta Physica Sinica, 2012, 61(8): 080502.doi:10.7498/aps.61.080502 |
[6] |
Xia Jian-Ping, Ren Xue-Zao, Cong Hong-Lu, Wang Xu-Wen, He Shu.Quantum evolution of entanglement property in two-qubit and oscillator coupling system. Acta Physica Sinica, 2012, 61(1): 014208.doi:10.7498/aps.61.014208 |
[7] |
Wang Xiao-Qin, Zhou Li-You, Lu Huai-Xin.Dynamical evolution for time-dependent qscillators. Acta Physica Sinica, 2008, 57(11): 6736-6740.doi:10.7498/aps.57.6736 |
[8] |
Cao Peng-Fei, Cheng Lin, Zhang Xiao-Ping.Vectorial Hopkins formulation depending on angles of off-axis illumination. Acta Physica Sinica, 2008, 57(11): 6946-6954.doi:10.7498/aps.57.6946 |
[9] |
Bai Zhan-Wu, Song Yan-Li.The dynamical resonance of a harmonic oscillator coupled to a heat bath with harmonic velocity noise and harmonic noise. Acta Physica Sinica, 2007, 56(11): 6220-6223.doi:10.7498/aps.56.6220 |
[10] |
Xu Xiu-Wei, Ren Ting-Qi, Liu Shu-Yan, Dong Yong-Mian, Zhao Ji-De.General solution for multi-dimensional coupled and forced quantum oscillator. Acta Physica Sinica, 2006, 55(2): 535-538.doi:10.7498/aps.55.535 |
[11] |
Zheng Yi, Yang Xin-E.Solution of time-dependent harmonic oscillator system using explicit Euler method and discussion of the cyclic initial states. Acta Physica Sinica, 2005, 54(2): 511-516.doi:10.7498/aps.54.511 |
[12] |
Huang Bo-Wen.A time-dependent damped harmonic oscillator with a force quadratic in velocity. Acta Physica Sinica, 2003, 52(2): 271-275.doi:10.7498/aps.52.271 |
[13] |
LI BO-ZANG, LI LING.RIGOROUS EVOLVING STATES OF EXP-SIN TYPE FOR THE GENERALIZED TIME-DEPENDENT QUANTUM OSCILLATOR WITH A MOVING BOUNDARY. Acta Physica Sinica, 2001, 50(9): 1654-1660.doi:10.7498/aps.50.1654 |
[14] |
XU XIU-WEI, LIU SHENG-DIAN, REN TING-QI, ZHANG YONG-DE.EVOLUTION OPERATOR AND WAVE FUNCTION OF A TIME-DEPENDENT OSCILLATOR. Acta Physica Sinica, 1999, 48(9): 1601-1604.doi:10.7498/aps.48.1601 |
[15] |
YU ZHAO-XIAN, WANG JI-SUO, LIU YE-HOU.HIGHER POWER SQUEEZING AND ANTIBUNCHING EFFECTS FOR GENERALIZED ODD AND EVEN COHERENT STATES OF A NON HARMONIC OSCILLATOR. Acta Physica Sinica, 1997, 46(9): 1693-1698.doi:10.7498/aps.46.1693 |
[16] |
NI ZHI-XIANG.SUPERPOSITION OF GENERALIZED COHERENT STATES IN THE NON HARMONIC OSCILLATOR POTENTIAL. Acta Physica Sinica, 1997, 46(9): 1687-1692.doi:10.7498/aps.46.1687 |
[17] |
XU ZI-WEN.EVEN AND ODD GENERALIZED COHERENT STATES IN THE NON HARMONIC OSCILLATOR POTENTIAL. Acta Physica Sinica, 1996, 45(11): 1807-1811.doi:10.7498/aps.45.1807 |
[18] |
Li Jin-Hui, Zeng Gao-Jian.. Acta Physica Sinica, 1995, 44(3): 337-344.doi:10.7498/aps.44.337 |
[19] |
CHEN WEI, CHANG ZHE, GUO HAN-YING.CLASSICAL q-DEFORMED HARMONIC OSCILLATORS AND THEIR ? QUANTIZATION. Acta Physica Sinica, 1991, 40(3): 337-344.doi:10.7498/aps.40.337 |
[20] |
PENG HUAN-WU.QUANTUM MECHANICAL TREATMENT OF A DAMPED HARMONIC OSCILLATOR. Acta Physica Sinica, 1980, 29(8): 1084-1089.doi:10.7498/aps.29.1084 |