Search

Article

x

Highlights

Topics
Article Type

COVER ARTICLE

COVER ARTICLE

Gel transition of active triblock copolymers
Shi Zi-Xuan, Jin Yan, Jin Yi-Yang, Tian Wen-De, Zhang Tian-Hui, Chen Kang
2024, 73 (17): 170501. doi:10.7498/aps.73.20240796
Abstract +
The self-propulsion of active matter leads to many non-equilibrium self-organization phenomena, and the conformational freedom of polymer chains can produce unique equilibrium self-assembly behaviors, which stimulates cross-disciplinary research between active matter and polymer physics. In this work, we use molecular dynamics simulations to investigate the modulation of self-propulsion activity on the gel transition of ABA triblock copolymers. The research results indicate that under different active forces and attractive strengths, the gel states formed by ABA copolymers can be divided into three types: stable polymer gels with stable percolation paths and uniform spatial distribution, dynamic polymer gels with constantly changing percolation path and strand conformation, and collapsed polymer gels aggregating into large percolating clusters. The spatial uniformity of active gels is related not only to the concentration fluctuation during the formation of the network, but also to the inconsistent movement of the network chains caused by the activity, which is manifested in the rotation of crosslinking points in the flexible system and the directional movement of the bundles along their contour directions in the semi-flexible and rigid systems. In terms of topological conformation of polymer networks, when the attractive strength between A blocks is strong, the proportion of loop increases with the active force increasing. When attractive strength is weak, inter- and intra-chain binding are unstable, and the conformation is easily changed by the activity drive, noise and other chain collisions, so the proportion of loop decreases with the active force increasing. The branching number of crosslinking points varies with active force, which is not only affected by the attraction strength, but also related to the rigidity of the network chain. Generally, the branch number of crosslinking points in semi-flexible networks is larger than that in flexible and rigid networks. In addition, the directional motion of active polymers induces anomalous diffusion in stable polymer gels. This study contributes to the understanding of the collective behavior of active polymers and serves as a guide for designing and implementing active polymeric materials.

VIEWS AND PERSPECTIVES

EDITOR'S SUGGESTION

Geometric degrees of freedom and graviton-like excitations in fractional quantum Hall liquids
Kun Yang
2024, 73 (17): 177801. doi:10.7498/aps.73.20240994
Abstract +
The application of topology in condensed matter physics began with the study of the quantum Hall effect and has gradually become the main theme of modern condensed matter physics. Its importance lies in capturing the universal properties of physical systems. In particular, fractional quantum Hall liquids are the most strongly correlated systems and exhibit topological order. Its most important and universal feature is the quasiparticle (quasi-hole) elementary excitations with fractional charge and statistics, which are captured by topological field theories. However, such a macroscopic description of fractional quantum Hall liquids is not complete, because it misses an important geometric aspect that is important for both universal and non-universal properties of the system. In particular, the nature of its electrically neutral elementary excitations has not been fully understood until recently. Finite-wavelength electrically neutral elementary excitations can be viewed as charge density waves or bound states of quasi-particles-quasi-holes. However, such pictures are not applicable in the long-wave limit, so a new theoretical framework is needed. In this theoretical framework, one of the most basic degrees of freedom is the metric tensor that describes the electron correlation. Figuratively speaking, it describes the geometric shape of the correlation hole around the electron. Therefore, this theory is called the geometric theory of the fractional quantum Hall effect. Since the metric tensor is also the basic degree of freedom of the theory of gravity, this theoretical framework can be regarded as a certain type of quantum theory of gravity. Its basic elementary excitation is a spin-two graviton. This perspective discusses the geometric degrees of freedom and its quantum dynamics in quantum Hall liquids from a microscopic perspective, revealing that its basic elementary excitations are spin-two graviton-like particles with specific chirality, and focuses on the experimental detection of this chiral graviton-like particle. The figure illustrates graviton-like excitation and its chirality in the 1/3 Laughlin state using Xiao-Gang Wen’s dancing pattern analogy [Wen X G 2004 Quantum Field Theory of Many-body Systems: From the Origin of Sound to An Origin of Light and Electrons(Oxford: Oxford University Press)], with left panel showing that in the Laughlin ground state (or dancing pattern), the minimum relative angular momentum of a pair of dancers is three, ensuring sufficient separation between them, and with right panel displaying that a graviton-like excitation corresponding to a pair whose relative angular momentum changes from three to one (antisymmetry of fermion wave function only allows for odd relative angular momenta). This is not allowed in the Laughlin state, as a result, it corresponds to an excitation which is the “graviton” detected by Liang et al. [Liang J H, Liu Z Y, Yang Z H, et al. 2024 Nature 62878 ]. In other words, the Raman process creates a “graviton” by turning a pair with relative angular momentum three (left panel) into a pair with relative angular momentum one (right panel). The angular momentum of this excitation is $1- 3 =-2 $ , corresponding to a graviton with chirality –2. For hole states like 2/3, because the chirality is reversed for holes, graviton chirality becomes +2. This figure is adopted from Yang [Yang K 2024 The Innovation 5100641 ].

The 90th Anniversary ofActa Physica Sinica

EDITOR'S SUGGESTION

Self-assembled biomolecular soft materials and their physical properties
Han Xu, Xue Bin, Cao Yi, Wang Wei
2024, 73 (17): 178103. doi:10.7498/aps.73.20240947
Abstract +
Self-assembling biomolecular soft materials are a novel type of soft matter formed through the self-assembly process by using biomolecules or biomolecular building blocks. The characteristics of bio-sourced origin and assembly driven by weak interactions endow these materials with advantages such as high biocompatibility, reversible assembly, dynamic responsiveness, and controllable microstructures. These properties offer immense potential for development in fields such as biomedicine, tissue engineering, and flexible sensing. This paper concisely reviews the fundamental construction principles of self-assembling biomolecular soft materials and discusses three categories, i.e. nanomaterials, gel materials, and composite materials, by using amino acids and peptides as examples of assembly units. The specific self-assembly molecular mechanisms, material construction strategies, and functional application scenarios of these materials are elucidated. We anticipate that the research on self-assembling soft matter biomolecular materials will evolve from exploring structural units and measuring properties to customizing multifunctional properties and integrating advanced applications. This will lead to the development of novel composite intelligent biomolecular soft matter materials, and further promoting their applications in biomedicine, organic semiconductors, and soft robotics.

The 90th Anniversary ofActa Physica Sinica

EDITOR'S SUGGESTION

Current status and prospects of burning plasma physics in magnetically confined fusion
Sun You-Wen, Qiu Zhi-Yong, Wan Bao-Nian
2024, 73 (17): 175202. doi:10.7498/aps.73.20240831
Abstract +
Current status and challenges of key physics related to high-confinement operational scenarios and energetic particle confinement are briefly reviewed from the perspective of design and operation of tokamak-based fusion reactors. In the past few decades, significant progress has been made in the research on high-confinement mode physics, i.e. the main stability and confinement constraints on operational window of a fusion reactor have been identified, and some control methods for adjusting plasma kinetic profiles to optimize performance have been developed. Several operational scenarios, including inductive, hybrid and steady-stateetc, which are potentially applicable for future reactors, have been developed. In the conditions that fusion alpha particle self-heating is predominant and shear Alfvén wave (SAW) instabilities potentially dominate fusion alpha particle transport, the SAW linear stability properties and excitation mechanisms are understood in depth, and the SAW instabilities nonlinear saturation, alpha particle confinement, and the influence of the heating deposition and the micro-turbulence regulation on fusion profile are under extensive investigation. The magnetically confined fusion research has entered a new stage of ignition and burning plasma physics, and new challenges that are faced are addressed, including whether efficient self-heating of plasmas by fusion alpha particles can be achieved, how the plasma stability and high-confinement can be maintained through the active control of key plasma profiles under the condition of dominant alpha particle heating, and whether it is possible to establish accurate models to predict long time scale complex dynamical evolution of fusion plasmasetc. Solving these key problems will lay a solid scientific foundation for designing and operating future fusion reactors as well as promote the development of plasma science.

SPECIAL TOPIC—Quantum communication and quantum network

EDITOR'S SUGGESTION

On-demand provisioning strategy for inter-domain key services in multi-domain cross-protocol quantum networks
Chen Yue, Liu Chang-Jie, Zheng Yi-Jia, Cao Yuan, Guo Ming-Xuan, Zhu Jia-Li, Zhou Xing-Yu, Yu Xiao-Song, Zhao Yong-Li, Wang Qin
2024, 73 (17): 170301. doi:10.7498/aps.73.20240819
Abstract +
Most of the existing metropolitan quantum networks are implemented based on a single quantum key distribution protocol, and interconnecting metropolitan quantum networks implemented by different protocols are the development trend of large-scale quantum networks, but there are still some problems in the provision of inter-domain key services, such as low possibility of success and mismatch between key supply and demand. To solve the above problems, this paper proposes two on-demand inter-domain key service provisioning strategies for multi-domain cross-protocol quantum networks, namely, on-demand provisioning strategy based on BB84 bypass first (BB84-BF) and on-demand provisioning strategy based on MDI bypass first (MDI-BF). Meanwhile, a service provisioning model for multi-domain cross-protocol quantum networks is constructed, and an on-demand inter-domain key service provisioning algorithm is designed. Moreover, numerical simulations and performance evaluation are carried out under two scenarios: high key rate demand and low key rate demand for two-domain and three-domain quantum network topologies. Simulation results verify that the proposed on-demand provisioning strategies have better applicability to different multi-domain quantum networks. In addition, for different key rate requirements, the MDI-BF strategy and BB84-BF strategys have different performance advantages under different performance indicators. For example, in terms of the success possibility of inter-domain key service requests, the MDI-BF strategy is more suitable for the low key rate requirements (~30% higher than the traditional strategies in two domain topologies), while the BB84-BF strategy is more suitable for the high key rate requirements (~19% higher than the traditional strategies under two domain topologies). In addition, compared with the traditional strategies, the proposed on-demand provisioning strategies can increase the balance degree between key supply and demand by more than one order of magnitude. Hence, the proposed strategies can reduce the cost of inter-domain key service provisioning and improve the realistic security level.

INSTRUMENTATION AND MEASUREMENT

EDITOR'S SUGGESTION

Research progress of ultracold ion source
Zhou Wen-Chang, Fang Feng, Luo Chang-Jie, Mou Hong-Jin, Lu Liang, Zou Li-Ping, Cheng Rui, Yang Jie, Du Guang-Hua
2024, 73 (17): 173701. doi:10.7498/aps.73.20240695
Abstract +
Nanobeam is an advanced technology for preparing charged ion beams with spot diameters on a nanometer scale, and mainly used for high-resolution and high-precision ion beam analysis, ion beam fabrication and ion beam material modification research. The nanobeam devices play an important role in realizing material analysis, micro/nano fabrication, microelectronic device manufacturing and quantum computing. The high-quality ion source is one of the key components of nanobeam device, the performance of which directly affects the resolution and precision of the nanobeam system. However, the traditional ion source used in this system is limited to available ionic species, large energy spread and complex structure. These issues hinder their ability to meet emerging application scenarios that require multi-ion types and high resolution. This emphasizes the importance of creating newion sources as soon as possible. With the development of laser cooling technology, ultracold ions with temperatures in the range of mK or even μK can be obtained based on photoionization of cold atoms and laser cooling of ions. The typical characteristics of low temperature and easy operation greatly promote the emergence of ultracold ion sources. The ultracold ions exhibit extremely small transverse velocity divergence, which can significantly enhance the brightness and emittance quality parameters of the ion source, bringing great opportunities for innovating nano-ion beam technology. Therefore, the research on ultracold ion sources is of great significance for achieving high-quality ion sources with higher brightness, smaller size, lower energy dispersion, more diverse ion species, and simplified structure. Here, we introduce the important achievements in basic research and application technology development of magneto-optical trap ion sources, cold atomic beam ion sources, and ultracold single ion sources from the aspects of preparation principles, generation methods, and typical applications, and review the recent research progress of ultracold ion sources. Finally, we provide an outlook on the future development and application prospects of ultracold ion sources.

EDITOR'S SUGGESTION

Controlled pulse generation and annihilation dynamics in ultrafast fiber lasers
Zhou Rui, Li Yang, Zhu Run-Hui, Zhang Zu-Xing
2024, 73 (17): 174201. doi:10.7498/aps.73.20240673
Abstract +
In this paper, the mode-locked pulse generation and annihilation dynamics in ultrafast fiber lasers based on pump intensity modulation are investigated by using real-time Fourier transform spectral probing. The results show that the laser outputs stable mode-locked pulses when the pump modulation voltage is at a high level. As the modulation voltage jumps to a low level, the intensity of the mode-locked pulse decreases, and then undergoes a period of decaying oscillation before annihilation occurs, and after ~5 μs the soliton is reconstructed from the noise, accompanied by the generation of theQ-modulation instability. In the low-level phase, the annihilation process in the laser cavity occurs continuously with a period of ~55 μs. By changing the duty cycle of the modulation pump, it is possible to control the the number of times solitons continuously annihilate under low-level modulation. Further, the continuous switching process of mode-locking and soliton annihilation is related to the modulation frequency of the pump, and the increase of the modulation frequency can effectively shorten the duration of the two states, thus reducing the number of soliton annihilations. In addition, by reducing the value of the low level, the gain in the laser cavity can be reduced, resulting in a shorter period of successive soliton annihilation. The results of the study are conducive to an in-depth understanding of the formation and annihilation dynamics of solitons, and provide new perspectives for developing various operation mechanisms of ultrafast lasers.

DATA PAPERS

EDITOR'S SUGGESTION

Photovoltaic properties of novel quaternary chalcogenides based on high-throughput screening and first-principles calculations
Kang Jia-Xing, Yan Quan-He, Cao Hao-Yu, Meng Wei-Wei, Xu Fei, Hong Feng
2024, 73 (17): 176301. doi:10.7498/aps.73.20240795
Abstract +
In recent decades, the demand for clean energy has promoted extensive research on solar cells as a key renewable energy source. Among the various emerging absorber layer materials, Kesterite-type semiconductors have aroused significant interest. Especially, Kesterite Cu 2ZnSnS 4(CZTS) stands out as a promising candidate for low-cost thin-film solar cells due to its direct bandgap, high optical absorption coefficient, suitable bandgap (1.39–1.52 eV), and abundance of constituent elements. However, the power conversion efficiency (PCE) of CZTS-based solar cells currently lags behind that of Cu(In,Ga)Se 2(CIGS) cells, mainly due to insufficient open-circuit voltage caused by a large number of disordered cations and defect clusters, resulting in non-radiative recombination and band-tail states. To address these challenges, partial or complete cation substitution has become a viable strategy for altering the harmful defects in CZTS. This study proposes a heterovalent substitution of Zn in CZTS and explores the potential of novel quaternary chalcogenide compound A 2 M 2 M'Q 4( A= Na, K, Rb, Cs, In, Tl; M= Cu, Ag, Au; M'= Ti, Zr, Hf, Ge, Sn; Q= S, Se, Te) as absorbers for solar cells. By substituting elements in five prototype structures, a comprehensive material database comprising 1350 A 2 M 2 M'Q 4compounds is established. High-throughput screening and first-principles calculations are used to evaluate the thermodynamic stabilities, band gaps, spectroscopic limited maximum efficiencies (SLMEs), and phonon dispersions of these compounds. Our research results indicate that 543 compounds exhibit thermodynamic stability ( E hull< 0.01 eV/atom), 202 compounds possess suitable band gaps (1.0–1.5 eV), and 10 compounds meet all the criteria for thermodynamic and dynamic stability, suitable band gaps, and high optical absorption performance (10 4–10 6cm –1), with theoretical SLME values exceeding 30%. Notably, Ibam-Rb 2Ag 2GeTe 4exhibits the highest SLME (31.8%) in these candidates, featuring a band gap of 1.27 eV and a small carrier effective mass (< m 0). The electronic structures and optical properties of these compounds are comparable to those of CZTS, which makes them suitable for highly efficient single-junction thin-film solar cells. All the data presented in this work can be found at https://www.doi.org/10.57760/sciencedb.j00213.00006 .

INSTRUMENTATION AND MEASUREMENT

EDITOR'S SUGGESTION

Development of a transmission X-ray nanometer-resolution microscope based on laboratory light source
Liao Ke-Liang, He Qi-Li, Song Yang, Li Rong-Gang, Song Mao-Hua, Li Pan-Yun, Zhao Hai-Feng, Liu Peng, Zhu Pei-Ping
2024, 73 (17): 178701. doi:10.7498/aps.73.20240727
Abstract +
Transmission X-ray microscope (TXM) is a high-precision, cutting-edge X-ray imaging instrument, which is a marvel of modern science and technology. It enables non-destructive imaging on a nanoscale, providing a powerful research tool for various scientific fields such as physics, life science, materials science, and chemistry. Although many synchrotron radiation facilities at home and abroad have established nano-CT experimental stations with TXM as the core, currently only a few companies internationally can provide commercial TXM instrument based on laboratory X-ray sources. The primary reason is that this instrument involves numerous engineering challenges, including high-brightness laboratory X-ray sources, high-resolution X-ray optical elements, high-precision sample stage systems, high-sensitivity detectors, and extremely strict requirements for environmental factors such as temperature and vibration. In order to promote the development of high-end X-ray imaging instruments, it is necessary to overcome the technological bottlenecks encountered in the development of X-ray nano-CT. Discussed in this work mainly are the instrument design of a laboratory transmission X-ray microscope with working energy of 5.4 keV and the results of full-field imaging experiments. To start with, the design of the TXM instrument is introduced in detail. The TXM instrument is equipped with several key components, including laboratory X-ray source, condenser, sample stage module, zone plate, and imaging detector. The TXM instrument adopts a modular vibration isolation design and is equipped with a dedicated temperature control system. The main imaging magnifications of the TXM instrument are 50×, 75×, and 100×, and the corresponding optical parameters and photos are introduced. The X-ray source used is a micro-focus X-ray source, operating in Cr target mode, with a focal spot size of 20 μm and a Ka characteristic spectrum brightness of $ 5\times {10}^{9}~\rm {photons}/({mm}^2\cdot {mrad}^2\cdot s)$ . The X-ray source provides illumination for the sample after being focused by an ellipsoidal condenser. The outer ring of the condenser's illumination ring corresponds to a numerical aperture (NA) of $ {NA}_{2} = 3.196~\rm mrad $ , and the inner ring corresponds to a numerical aperture of $ {NA}_{1} = 1.9086~\rm mrad $ . Under these conditions, the limit resolution of this TXM instrument is 22 nm. The zone plate has a diameter of 70μm, a focal length of 8.7mm, and 616 zones. The TXM instrument uses a high-resolution optical coupling detector equipped with a scientific-grade CMOS camera with an effective pixel size of 7.52μm. The optical coupling detector is equipped with 2× and 10× high numerical aperture objectives. When the TXM instrument magnification is 50×, the effective pixel size of the TXM instrument is 15 nm. In addition,a gold resolution test card is used as the sample to determine the imaging field of view of the TXM instrument by observing the size of the imaging area of the test card on the detector, and to determine the imaging resolution of the TXM instrument by observing the line width of the star-shaped target in the center of the test card. Experimental results show that the TXM instrument has an imaging field of view of 26μm and can achieve the clear imaging of characteristic structure with a line width of 30 nm. The radial power spectrum curve of the Siemens Star shows this TXM instrument has the potential to resolve 28.6-nm half pitch line pair features. Finally, we draw some conclusions and present outlook. At present, imaging of 30-nm-wide line features has been realized, but the imaging of 30-nm half pitch line pair feature has not yet been achieved, and the limit resolution has not reached the design value, either. We will continue to explore the potential for upgrading the imaging resolution of the laboratory TXM in future work.

The 90th Anniversary ofActa Physica Sinica·COVER ARTICLE

COVER ARTICLE

Research progress of integrated quantum light sources with orbital angular momentum
Chen Bo, Liu Jin, Li Jun-Tao, Wang Xue-Hua
2024, 73 (16): 164204. doi:10.7498/aps.73.20240791
Abstract +
Quantum light sources are one of key devices for quantum information processing, and they are also the important foundation for applications such as in quantum computing, quantum communication, and quantum simulation. Improving the capacity of quantum information coding by using the quantum light source is a major challenge in the development of quantum information technology. Photons with a helical phase front can carry a discrete, unlimited but quantized amount of orbital angular momentum (OAM). The infinite number of states with different OAMs can greatly increase the capacity of optical communication and information processing in quantum regimes. To date photons carrying OAM have mainly been generated by using bulk crystals, which limits the efficiency and the scalability of the source. With the advancement of quantum photonic technology, many significant quantum photonic devices can now be realized on integrated chips. However, creating high-dimensional OAM quantum states at a micro-nano scale is still a challenge. And the research of harnessing high-dimensional OAM mode by using integrated quantum photonic technologies is still in its infancy. Here, the authors review the recent progress and discuss the integrated quantum light sources with OAM. The authors introduce the research progress of using OAM for both single photons and entangled photons and emphasize the exciting work on pushing boundaries in high-dimensional quantum states. This may pave the way for the research and practical applications of high-dimensional quantum light sources.
  • 1
  • 2
  • 3
  • 4
  • 5
  • ...
  • 171
  • 172