[1] |
Dong Shan-Shan, Qin Li-Guo, Liu Fu-Yao, Gong Li-Hua, Huang Jie-Hui.Quantum evolution speed induced by Hamiltonian. Acta Physica Sinica, 2023, 72(22): 220301.doi:10.7498/aps.72.20231009 |
[2] |
Jiang Tao, Huang Jin-Jing, Lu Lin-Guang, Ren Jin-Lian.Numerical study of nonlinear Schrödinger equation with high-order split-step corrected smoothed particle hydrodynamics method. Acta Physica Sinica, 2019, 68(9): 090203.doi:10.7498/aps.68.20190169 |
[3] |
Wei Feng, Jin Liang, Liu Jun, Ding Feng, Zheng Xin-Ping.Animproved ghost cell method for flow simulation involving static and moving boundary. Acta Physica Sinica, 2019, 68(12): 124703.doi:10.7498/aps.68.20190013 |
[4] |
Zhu Pan-Cheng, Bian Qing-Yong, Li Jin-Bin.Relations among different energy dissipations of Euler disk. Acta Physica Sinica, 2015, 64(17): 174501.doi:10.7498/aps.64.174501 |
[5] |
Feng Sheng-Qi, Qiu Qing-Chun.The Jahn-Teller effect and energy-level splitting for C2+4molecules with the D4h symmetry configuration. Acta Physica Sinica, 2011, 60(5): 057106.doi:10.7498/aps.60.057106 |
[6] |
Tian Jing, Qiu Hai-Bo, Chen Yong.Mechanism of measure synchronization in coupled Hamiltonian systems. Acta Physica Sinica, 2010, 59(6): 3763-3768.doi:10.7498/aps.59.3763 |
[7] |
Wang Li-Xia, Kuang Xiao-Yu, Li Hui-Fang, Chai Rui-Peng, Wang Huai-Qian.Theoretical study of local structure and ground-state splitting of Cs2NaMF6(M=Al, Ga):Cr3+ complex molecule systems. Acta Physica Sinica, 2010, 59(9): 6501-6507.doi:10.7498/aps.59.6501 |
[8] |
Lou Zhi-Mei.Form invariance for Hamiltonian Ermakov systems. Acta Physica Sinica, 2005, 54(5): 1969-1971.doi:10.7498/aps.54.1969 |
[9] |
Tao Jian-Wu, Shi Yao-Wu, Chang Wen-Xiu.Chaotic anti-control of a port control Hamilton system. Acta Physica Sinica, 2004, 53(6): 1682-1686.doi:10.7498/aps.53.1682 |
[10] |
Chen Shao-Ying, Xu Hai-Bo, Wang Guang-Rui, Chen Shi-Ga ng.Study on the measure synchronization in coupled Hamiltonian systems*. Acta Physica Sinica, 2004, 53(12): 4098-4110.doi:10.7498/aps.53.4098 |
[11] |
Chen Zeng-Jun, Ning Xi-Jing.Physical meaning of non-Hermitian Hamiltonian. Acta Physica Sinica, 2003, 52(11): 2683-2686.doi:10.7498/aps.52.2683 |
[12] |
Cai Hao, Chen Shi-Rong, Huang Nian-Ning.General procedure to formulate Hamiltonian theory of the completely integrable n onlinear equations and its application to the sine-Gordon equation. Acta Physica Sinica, 2003, 52(9): 2206-2212.doi:10.7498/aps.52.2206 |
[13] |
YAN ZHEN-YA, ZHANG HONG-QING.NEW LAX INTEGRABLE HIERARCHY OF EVOLUTION EQUATIONS AND ITS INFINITE-DIMENSIONAL BI-HAMILTONIAN STRUCTURE. Acta Physica Sinica, 2001, 50(7): 1232-1236.doi:10.7498/aps.50.1232 |
[14] |
ZHANG RUN-DONG, YAN FENG-LI, LI BO-ZANG.HAMILTONIAN OPERATORS CONSTRUCTED FROM TWO KINDS OF FINITE-DEPTH QUANTUM POTENTIAL WELLS WITH TIME-DEPENDENT BOUNDARY CONDITIONS AND THEIR COMPLEX BERRY PHASES. Acta Physica Sinica, 1998, 47(10): 1585-1599.doi:10.7498/aps.47.1585 |
[15] |
LAI YUN-ZHONG, LIANG JIU-QING.TIME EVOLUTION OF A QUANTUM SYSTEM WITH HAMILTONIAN CONSISTING OF TIME-DEPENDENT LINEAR COMBINATION OF SU(l, 1)AND SU(2) GENERATORS AND THE HERMITIAN INVARIANT OPERATOR. Acta Physica Sinica, 1996, 45(5): 738-746.doi:10.7498/aps.45.738 |
[16] |
ZHOU QING.DIAGONALIZATION OF HAMILTONIAN FOR VIBRATION OF AB ALLOYS. Acta Physica Sinica, 1988, 37(6): 1003-1009.doi:10.7498/aps.37.1003 |
[17] |
He Kai-fen.RESONANCE PERTURBATION OF A HAMILTONIAN BY COUPLING OF TWO DIBBERENT KINDS OF MODES. Acta Physica Sinica, 1986, 35(10): 1330-1337.doi:10.7498/aps.35.1330 |
[18] |
WANG ZHENG-XING.AN APPROXIMATE HAMILTONIAN OF SUPERCONDUCTOR TUNNELING SYSTEM TREATED BY VARIATIONAL METHOD. Acta Physica Sinica, 1979, 28(5): 48-58.doi:10.7498/aps.28.48 |
[19] |
LIN FU-CHENG, ZHU JI-KANG, HUANG WU-HAN.A GENERALIZED EFFECTIVE SPIN-HAMILTONIAN. Acta Physica Sinica, 1964, 20(11): 1114-1123.doi:10.7498/aps.20.1114 |
[20] |
.. Acta Physica Sinica, 1963, 19(9): 613-616.doi:10.7498/aps.19.613 |