[1] |
Xu Rui-Li, Fang Jian-Hui, Zhang Bin.The Noether conserved quantity of Lie symmetry for discrete difference sequence Hamilton system with variable mass. Acta Physica Sinica, 2013, 62(15): 154501.doi:10.7498/aps.62.154501 |
[2] |
Jiang Wen-An, Luo Shao-Kai.Mei symmetry leading to Mei conserved quantity of generalized Hamiltonian system. Acta Physica Sinica, 2011, 60(6): 060201.doi:10.7498/aps.60.060201 |
[3] |
Zhang Hong-Bin, Lü Hong-Sheng, Gu Shu-Long.The Lie point symmetry-preserving difference scheme of holonomic constrained mechanical systems. Acta Physica Sinica, 2010, 59(8): 5213-5218.doi:10.7498/aps.59.5213 |
[4] |
Li Yuan-Cheng, Xia Li-Li, Wang Xiao-Ming.Unified symmetry of mechanico-electrical systems with nonholonomic constraints of non-Chetaev’s type. Acta Physica Sinica, 2009, 58(10): 6732-6736.doi:10.7498/aps.58.6732 |
[5] |
Jia Li-Qun, Cui Jin-Chao, Zhang Yao-Yu, Luo Shao-Kai.Lie symmetry and conserved quantity of Appell equation for a Chetaev’s type constrained mechanical system. Acta Physica Sinica, 2009, 58(1): 16-21.doi:10.7498/aps.58.16 |
[6] |
Lu Kai, Fang Jian-Hui, Zhang Ming-Jiang, Wang Peng.Noether symmetry and Mei symmetry of discrete holonomic system in phase space. Acta Physica Sinica, 2009, 58(11): 7421-7425.doi:10.7498/aps.58.7421 |
[7] |
Shi Shen-Yang, Huang Xiao-Hong, Zhang Xiao-Bo, Jin Li.The Lie symmetry and Noether conserved quantity of discrete difference variational Hamilton system. Acta Physica Sinica, 2009, 58(6): 3625-3631.doi:10.7498/aps.58.3625 |
[8] |
Li Yuan-Cheng, Xia Li-Li, Zhao Wei, Hou Qi-Bao, Wang Jing, Jing Hong-Xing.Unified symmetry of mechanico-electrical systems. Acta Physica Sinica, 2007, 56(9): 5037-5040.doi:10.7498/aps.56.5037 |
[9] |
Jing Hong-Xing, Li Yuan-Cheng, Xia Li-Li.Perturbation of Lie symmetries and a type of generalized Hojman adiabatic invariants for variable mass systems with unilateral holonomic constraints. Acta Physica Sinica, 2007, 56(6): 3043-3049.doi:10.7498/aps.56.3043 |
[10] |
Shi Shen-Yang, Fu Jing-Li, Chen Li-Qun.Lie symmetries of discrete Lagrange systems. Acta Physica Sinica, 2007, 56(6): 3060-3063.doi:10.7498/aps.56.3060 |
[11] |
Fang Jian-Hui, Ding Ning, Wang Peng.A new type of conserved quantity of Mei symmetry for Hamilton system. Acta Physica Sinica, 2007, 56(6): 3039-3042.doi:10.7498/aps.56.3039 |
[12] |
Zhang Yi.Lutzky conserved quantities and velocity-dependent symmetries for systems with unilateral holonomic constraints. Acta Physica Sinica, 2006, 55(5): 2109-2114.doi:10.7498/aps.55.2109 |
[13] |
Jia Li-Qun, Zheng Shi-Wang.Mei symmetry of generalized Hamilton systems with additional terms. Acta Physica Sinica, 2006, 55(8): 3829-3832.doi:10.7498/aps.55.3829 |
[14] |
Wu Hui-Bin, Mei Feng-Xiang.Symmetries of Lagrange system subjected to gyroscopic forces. Acta Physica Sinica, 2005, 54(6): 2474-2477.doi:10.7498/aps.54.2474 |
[15] |
Zhang Yi.Symmetries and conserved quantities of mechanical systems with unilateral holonomic constraints in phase space. Acta Physica Sinica, 2005, 54(10): 4488-4495.doi:10.7498/aps.54.4488 |
[16] |
Fang Jian-Hui, Peng Yong, Liao Yong-Pan.On Mei symmetry of Lagrangian system and Hamiltonian system. Acta Physica Sinica, 2005, 54(2): 496-499.doi:10.7498/aps.54.496 |
[17] |
Zhang Ying, Li Zi-Ping.Fractional spin in non-Abel Chern-Simons theories. Acta Physica Sinica, 2005, 54(6): 2611-2613.doi:10.7498/aps.54.2611 |
[18] |
Zhang Ying, Li Ai-Min, Li Zi-Ping.Fractional spin in the O(3) nonlinear sigma model with Hopf and Maxwell-Chern-Simons terms. Acta Physica Sinica, 2005, 54(1): 43-46.doi:10.7498/aps.54.43 |
[19] |
LI ZI-PING.SYMMETRY IN CANONICAL FORMALISM OF CONSTRAINED SYSTEM. Acta Physica Sinica, 1992, 41(5): 710-719.doi:10.7498/aps.41.710 |
[20] |
LI ZI-PING.THE SYMMETRY TRANSFORMATIONS OF THE CONSTRAINED SYSTEM. Acta Physica Sinica, 1981, 30(12): 1699-1706.doi:10.7498/aps.30.1699 |