[1] |
Hu Zhou, Zeng Zhao-Yun, Tang Jia, Luo Xiao-Bing.Quasi-parity-time symmetric dynamics in periodically driven two-level non-Hermitian system. Acta Physica Sinica, 2022, 71(7): 074207.doi:10.7498/aps.70.20220270 |
[2] |
Hu Zhou, Zeng Zhao-Yun, Tang jia, Luo Xiao-bing.Quasi-Parity-Time symmetric dynamics in a periodcially driven two-level non-Hermitian system. Acta Physica Sinica, 2022, 0(0): 0-0.doi:10.7498/aps.71.20220270 |
[3] |
Shao Ya-Ting, Yan Kai, Wu Yin-Zhong, Hao Xiang.Dynamics of multipartite quantum coherence in asymmetric spin-orbit coupled system. Acta Physica Sinica, 2021, 70(1): 010301.doi:10.7498/aps.70.20201199 |
[4] |
Zhang Yi, Jin Shi-Xin.Noether symmetries of dynamics for non-conservative systems with time delay. Acta Physica Sinica, 2013, 62(23): 234502.doi:10.7498/aps.62.234502 |
[5] |
Che Jun-Ling, Zhang Hao, Feng Zhi-Gang, Zhang Lin-Jie, Zhao Jian-Ming, Jia Suo-Tang.Evolution of ultracold 70S Cs Rydberg atom. Acta Physica Sinica, 2012, 61(4): 043205.doi:10.7498/aps.61.043205 |
[6] |
Ling Rui-Liang, Feng Jin-Fu, Hu Yun.Exact wave function of dual-coupled two-dimensional harmonic oscillators with time-dependent and anisotropic mass and frequency. Acta Physica Sinica, 2010, 59(2): 759-764.doi:10.7498/aps.59.759 |
[7] |
Ling Rui-Liang, Feng Jin-Fu.Exact wave function of the coupled harmonic oscillator with time-dependent mass and frequency. Acta Physica Sinica, 2009, 58(4): 2164-2167.doi:10.7498/aps.58.2164 |
[8] |
Li Jiang-Fan, Huang Chun-Jia, Jiang Zong-Fu, Huang Zu-Hong.The evolution and two-mode squeezed states of the time-dependent two coupled harmonic oscillators. Acta Physica Sinica, 2005, 54(2): 522-529.doi:10.7498/aps.54.522 |
[9] |
Zheng Yi, Yang Xin-E.Solution of time-dependent harmonic oscillator system using explicit Euler method and discussion of the cyclic initial states. Acta Physica Sinica, 2005, 54(2): 511-516.doi:10.7498/aps.54.511 |
[10] |
Wang Ping, Yang Xin-E, Song Xiao-Hui.Exact solution for a harmonic oscillator with a time-dependent inverse square po tential by path-integral. Acta Physica Sinica, 2003, 52(12): 2957-2960.doi:10.7498/aps.52.2957 |
[11] |
Liu Cheng-Yi, Liu Jiang, Yin Jian-Ling, Deng Dong-Mei, Fan Guang-Han.. Acta Physica Sinica, 2002, 51(11): 2431-2434.doi:10.7498/aps.51.2431 |
[12] |
LI LING, LI BO-ZANG, LIANG JIU-QING.LEWIS-RIESENFELD PHASES AND BERRY PHASES IN THEQUANTUM SYSTEM OF TIME-DEPENDENT HARMONICOSCILLATOR WITH A MOVING BOUNDARY. Acta Physica Sinica, 2001, 50(11): 2077-2082.doi:10.7498/aps.50.2077 |
[13] |
LING RUI-LIANG.PROPAGATOR AND EXACT WAVE FUNCTION OF THE TIME DEPENDENTLY DAMPED HARMONIC OSCILLATOR. Acta Physica Sinica, 2001, 50(8): 1421-1424.doi:10.7498/aps.50.1421 |
[14] |
LI BO-ZANG, LI LING.RIGOROUS EVOLVING STATES OF EXP-SIN TYPE FOR THE GENERALIZED TIME-DEPENDENT QUANTUM OSCILLATOR WITH A MOVING BOUNDARY. Acta Physica Sinica, 2001, 50(9): 1654-1660.doi:10.7498/aps.50.1654 |
[15] |
Li Zhi-jian, Cheng Jian-gang, Liang Jiu-qing.Time Evolution and Berry Phases of a Time-Dependent Oscillator in Fin ite-Dimensional Hilbert Space. Acta Physica Sinica, 2000, 49(1): 11-16.doi:10.7498/aps.49.11 |
[16] |
FU JIAN, GAO XIAO-CHUN, XU JING-BO, ZOU XU-BO.INVARIANT-RELATED UNITARY TRANSFORMATION METHOD AND EXACT SOLUTIONS FOR THE QUANTUM DIRAC FIELD IN A TIME-DEPENDENT SPATIALLY HOMOGENEOUS ELECTRIC FIELD. Acta Physica Sinica, 1999, 48(6): 1011-1022.doi:10.7498/aps.48.1011 |
[17] |
XU XIU-WEI, LIU SHENG-DIAN, REN TING-QI, ZHANG YONG-DE.EVOLUTION OPERATOR AND WAVE FUNCTION OF A TIME-DEPENDENT OSCILLATOR. Acta Physica Sinica, 1999, 48(9): 1601-1604.doi:10.7498/aps.48.1601 |
[18] |
LIU DENG-YUN.THE BERRY PHASE OF THE QUANTUM STATE OF A HARMONIC OSCILLATOR WITH TIME-DEPENDENT FREQUENCY AND BOUNDARY CONDITIONS. Acta Physica Sinica, 1998, 47(8): 1233-1240.doi:10.7498/aps.47.1233 |
[19] |
DANG LAN-FEN.TIME EVOLUTION AND SQUEEZED STATES OF A TIME-DEPEDENT OSCILLATOR SYSTEM. Acta Physica Sinica, 1998, 47(7): 1071-1077.doi:10.7498/aps.47.1071 |
[20] |
GAO XIAO-CHUN, XU JIN-BO, QIAN TIE-ZHENG.THE EXACT SOLUTION AND BERRY'S PHASE FOR THE GENERALIZED TIME-DEPENDENT HARMONIC OSCILLATOR. Acta Physica Sinica, 1991, 40(1): 25-32.doi:10.7498/aps.40.25 |