[1] |
Wang Xiu-Ming, Zhou Yin-Qiu.Research on elastodynamic theory based on the framework of energy conservation. Acta Physica Sinica, 2023, 72(7): 074501.doi:10.7498/aps.72.20212272 |
[2] |
Ma Yan, Lin Shu-Yu, Xu Jie.Coupled oscillation and shape instability of bubbles in acoustic field. Acta Physica Sinica, 2018, 67(3): 034301.doi:10.7498/aps.67.20171573 |
[3] |
Cui Jin-Chao, Liao Cui-Cui, Zhao Zhe, Liu Shi-Xing.A simplified method of solving Birkhoffian function and Lagrangian. Acta Physica Sinica, 2016, 65(18): 180201.doi:10.7498/aps.65.180201 |
[4] |
Zhang Xin-You, L. J. Li, Huang Y. C..Euler-Lagrange equation for general n-order character functional and unification of quantitative causal principle, principle of relativity and general Newton’s laws. Acta Physica Sinica, 2014, 63(19): 190301.doi:10.7498/aps.63.190301 |
[5] |
Liu Shi-Xing, Song Duan, Jia Lin, Liu Chang, Guo Yong-Xin.Application research of symplectic Runge-Kutta method of solving Lagrange-Maxwell equation. Acta Physica Sinica, 2013, 62(3): 034501.doi:10.7498/aps.62.034501 |
[6] |
Fang Gang, Zhang Bin.Lagrangian dynamics and seismic wave align of elastic medium. Acta Physica Sinica, 2013, 62(15): 154502.doi:10.7498/aps.62.154502 |
[7] |
Xue Yun, Weng De-Wei, Chen Li-Qun.Methods of analytical mechanics for exact Cosserat elastic rod dynamics. Acta Physica Sinica, 2013, 62(4): 044601.doi:10.7498/aps.62.044601 |
[8] |
Ding Guang-Tao.The families of Lagrangians of a Painleve equation. Acta Physica Sinica, 2012, 61(11): 110202.doi:10.7498/aps.61.110202 |
[9] |
Ding Guang-Tao.A new approach to the construction of Lagrangians and Hamiltonians for one-dimensional dissipative systems with variable coefficients. Acta Physica Sinica, 2011, 60(4): 044503.doi:10.7498/aps.60.044503 |
[10] |
Jia Li-Qun, Zhang Yao-Yu, Yang Xin-Fang, Cui Jin-Chao, Xie Yin-Li.Type Ⅲ structural equation and Mei conserved quantity of Mei symmetry for a Lagrangian system. Acta Physica Sinica, 2010, 59(5): 2939-2941.doi:10.7498/aps.59.2939 |
[11] |
Song Bai, Wu Jing, Guo Zeng-Yuan.Hamilton’s principle based on thermomass theory. Acta Physica Sinica, 2010, 59(10): 7129-7134.doi:10.7498/aps.59.7129 |
[12] |
Ding Guang-Tao.A method for computing acceleration-dependent Lagrangians. Acta Physica Sinica, 2009, 58(10): 6725-6728.doi:10.7498/aps.58.6725 |
[13] |
Shi Shen-Yang, Fu Jing-Li, Chen Li-Qun.Lie symmetries of discrete Lagrange systems. Acta Physica Sinica, 2007, 56(6): 3060-3063.doi:10.7498/aps.56.3060 |
[14] |
Zheng Shi-Wang, Qiao Yong-Fen.Integrating factors and conservation theorems of Lagrange’s equations for generalized nonconservative systems in terms of quasi-coordinates. Acta Physica Sinica, 2006, 55(7): 3241-3245.doi:10.7498/aps.55.3241 |
[15] |
He Jin-Chun, Shi Li-Na, Chen Hua, Huang Nian-Ning.The Hamiltonian theory of Landau-Lifschitz equation and the gauge transformations. Acta Physica Sinica, 2005, 54(5): 2007-2012.doi:10.7498/aps.54.2007 |
[16] |
Lou Zhi-Mei.Lagrangian function and conserved quantity of onedimensional relativistic harmonic oscillator containing a quadratic velocity drag force term. Acta Physica Sinica, 2005, 54(4): 1457-1459.doi:10.7498/aps.54.1457 |
[17] |
Zhang Xiang-Wu.Higher order Lagrange equations of holonomic potential mechanical system. Acta Physica Sinica, 2005, 54(10): 4483-4487.doi:10.7498/aps.54.4483 |
[18] |
Ma Shan-Jun, Xu Xue-Xiang, Huang Pei-Tian, Hu Li-Yun.The discussion on Lagrange equation containing third order derivatives. Acta Physica Sinica, 2004, 53(11): 3648-3651.doi:10.7498/aps.53.3648 |
[19] |
QIAO YONG-FEN, LI REN-JIE, ZHAO SHU-HONG.SYMMETRY AND INVARIANT IN GENERALIZED MECHANICAL SYSTEMS IN THE HIGH-DIMENSIONAL EXTENDED PHASE SPACE. Acta Physica Sinica, 2001, 50(5): 811-815.doi:10.7498/aps.50.811 |
[20] |
Qiao Yong-Fen, Zhao Shu-Hong.. Acta Physica Sinica, 2001, 50(1): 1-7.doi:10.7498/aps.50.1 |