[1] |
Peng Hao, Ren Rui-Bin, Zhong Yang-Fan, Yu Tao.Stochastic resonance of fractional-order coupled system excited by trichotomous noise. Acta Physica Sinica, 2022, 71(3): 030502.doi:10.7498/aps.71.20211272 |
[2] |
.Research on Stochastic Resonance of Fractional-Order Coupled System Excited by Trichotomous Noise. Acta Physica Sinica, 2021, (): .doi:10.7498/aps.70.20211272 |
[3] |
Zheng Guang-Chao, Liu Chong-Xin, Wang Yan.Dynamic analysis and finite time synchronization of a fractional-order chaotic system with hidden attractors. Acta Physica Sinica, 2018, 67(5): 050502.doi:10.7498/aps.67.20172354 |
[4] |
Yang Jian-Hua, Ma Qiang, Wu Cheng-Jin, Liu Hou-Guang.A periodic vibrational resonance in the fractional-order bistable system. Acta Physica Sinica, 2018, 67(5): 054501.doi:10.7498/aps.67.20172046 |
[5] |
Xue Kai-Jia, Wang Cong-Qing.Sliding mode control of fractional order chaotic system based on an online error correction adaptive SVR. Acta Physica Sinica, 2015, 64(7): 070502.doi:10.7498/aps.64.070502 |
[6] |
Li Rui, Zhang Guang-Jun, Yao Hong, Zhu Tao, Zhang Zhi-Hao.Generalized dislocated lag projective synchronization of fractional chaotic systems with fully uncertain parameters. Acta Physica Sinica, 2014, 63(23): 230501.doi:10.7498/aps.63.230501 |
[7] |
Zhang Lu, Xie Tian-Ting, Luo Mao-Kang.Vibrational resonance in a Duffing system with fractional-order external and intrinsic dampings driven by the two-frequency signals. Acta Physica Sinica, 2014, 63(1): 010506.doi:10.7498/aps.63.010506 |
[8] |
Tu Zhe, Lai Li, Luo Mao-Kang.Directional transport of fractional asymmetric coupling system in symmetric periodic potential. Acta Physica Sinica, 2014, 63(12): 120503.doi:10.7498/aps.63.120503 |
[9] |
Jia Hong-Yan, Chen Zeng-Qiang, Xue Wei.Analysis and circuit implementation for the fractional-order Lorenz system. Acta Physica Sinica, 2013, 62(14): 140503.doi:10.7498/aps.62.140503 |
[10] |
Li Li-Xiang, Peng Hai-Peng, Luo Qun, Yang Yi-Xian, Liu Zhe.Problem and analysis of stability decidable theory for a class of fractional order nonlinear system. Acta Physica Sinica, 2013, 62(2): 020502.doi:10.7498/aps.62.020502 |
[11] |
Hu Jian-Bing, Zhao Ling-Dong.Stability theorem and control of fractional systems. Acta Physica Sinica, 2013, 62(24): 240504.doi:10.7498/aps.62.240504 |
[12] |
Yao Tian-Liang, Liu Hai-Feng, Xu Jian-Liang, Li Wei-Feng.Noise-level estimation of noisy chaotic time series based on the invariant of the largest Lyapunov exponent. Acta Physica Sinica, 2012, 61(6): 060503.doi:10.7498/aps.61.060503 |
[13] |
Xin Bao-Gui, Chen Tong, Liu Yan-Qin.Complexity evolvement of a chaotic fractional-orderfinancial system. Acta Physica Sinica, 2011, 60(4): 048901.doi:10.7498/aps.60.048901 |
[14] |
Luo Song-Jiang, Qiu Shui-Sheng, Luo Kai-Qing.Research on the stability of complexity of chaos-based pseudorandom sequence. Acta Physica Sinica, 2009, 58(9): 6045-6049.doi:10.7498/aps.58.6045 |
[15] |
Yu Si-Yao, Guo Shu-Xu, Gao Feng-Li.Calculation of the Lyapunov exponent for low frequency noise in semiconductor laser and chaos indentification. Acta Physica Sinica, 2009, 58(8): 5214-5217.doi:10.7498/aps.58.5214 |
[16] |
Zhao Pin-Dong, Zhang Xiao-Dan.Study on a class of chaotic systems with fractional order. Acta Physica Sinica, 2008, 57(5): 2791-2798.doi:10.7498/aps.57.2791 |
[17] |
Zhang Cheng-Fen, Gao Jin-Feng, Xu Lei.Chaos in fractional-order Liu system and a fractional-order unified system and the synchronization between them. Acta Physica Sinica, 2007, 56(9): 5124-5130.doi:10.7498/aps.56.5124 |
[18] |
Tao Chao-Hai, Lu Jun-An.Speed feedback synchronization of a chaotic system. Acta Physica Sinica, 2005, 54(11): 5058-5061.doi:10.7498/aps.54.5058 |
[19] |
Guan Xin-Ping, Fan Zheng-Ping, Zhang Qun-Liang, Wang Yi-Qun.. Acta Physica Sinica, 2002, 51(10): 2216-2220.doi:10.7498/aps.51.2216 |
[20] |
LIU HAI-FENG, ZHAO YAN-YAN, DAI ZHENG-HUA, GONG XIN, YU ZUN-HONG.CALCULATION OF THE LARGEST LYAPUNOV EXPONENT IN THE DISCRETE DYNAMICAL SYSTEM WITH WAVELET ANALYSIS. Acta Physica Sinica, 2001, 50(12): 2311-2317.doi:10.7498/aps.50.2311 |