[1] |
Ruan Yi-Run, Lao Song-Yang, Tang Jun, Bai Liang, Guo Yan-Ming.Node importance ranking method in complex network based on gravity method. Acta Physica Sinica, 2022, 71(17): 176401.doi:10.7498/aps.71.20220565 |
[2] |
Wang Kai-Li, Wu Chun-Xue, Ai Jun, Su Zhan.Complex network centrality method based on multi-order K-shell vector. Acta Physica Sinica, 2019, 68(19): 196402.doi:10.7498/aps.68.20190662 |
[3] |
Su Zhen, Gao Chao, Li Xiang-Hua.Analysis of the effect of node centrality on diffusion mode in complex networks. Acta Physica Sinica, 2017, 66(12): 120201.doi:10.7498/aps.66.120201 |
[4] |
Song Yu-Ping, Ni Jing.Effect of variable network clustering on the accuracy of node centrality. Acta Physica Sinica, 2016, 65(2): 028901.doi:10.7498/aps.65.028901 |
[5] |
Han Zhong-Ming, Wu Yang, Tan Xu-Sheng, Duan Da-Gao, Yang Wei-Jie.Ranking key nodes in complex networks by considering structural holes. Acta Physica Sinica, 2015, 64(5): 058902.doi:10.7498/aps.64.058902 |
[6] |
Yuan Ming.A cascading failure model of complex network with hierarchy structure. Acta Physica Sinica, 2014, 63(22): 220501.doi:10.7498/aps.63.220501 |
[7] |
Liu Jin-Liang.Research on synchronization of complex networks with random nodes. Acta Physica Sinica, 2013, 62(4): 040503.doi:10.7498/aps.62.040503 |
[8] |
Ren Zhuo-Ming, Shao Feng, Liu Jian-Guo, Guo Qiang, Wang Bing-Hong.Node importance measurement based on the degree and clustering coefficient information. Acta Physica Sinica, 2013, 62(12): 128901.doi:10.7498/aps.62.128901 |
[9] |
Yuan Wei-Guo, Liu Yun, Cheng Jun-Jun, Xiong Fei.Empirical analysis of microblog centrality and spread influence based on Bi-directional connection. Acta Physica Sinica, 2013, 62(3): 038901.doi:10.7498/aps.62.038901 |
[10] |
Zhou Xuan, Zhang Feng-Ming, Zhou Wei-Ping, Zou Wei, Yang Fan.Evaluating complex network functional robustness by node efficiency. Acta Physica Sinica, 2012, 61(19): 190201.doi:10.7498/aps.61.190201 |
[11] |
LÜ Ling, Liu Shuang, Zhang Xin, Zhu Jia-Bo, Shen Na, Shang Jin-Yu.Spatiotemporal chaos anti-synchronization of a complex network with different nodes. Acta Physica Sinica, 2012, 61(9): 090504.doi:10.7498/aps.61.090504 |
[12] |
Zhou Xuan, Zhang Feng-Ming, Li Ke-Wu, Hui Xiao-Bin, Wu Hu-Sheng.Finding vital node by node importance evaluation matrix in complex networks. Acta Physica Sinica, 2012, 61(5): 050201.doi:10.7498/aps.61.050201 |
[13] |
Li Fei, Xiao Liu, Liu Pu-Kun, Yi Hong-Xia, Wan Xiao-Sheng.A study on the cut-off amplification factor of the grid with film sphere and porous structure in grid- controlled electron gun. Acta Physica Sinica, 2012, 61(7): 078502.doi:10.7498/aps.61.078502 |
[14] |
Chen Ran, Li Xiang, Dong Li-Yun.Modeling and simulation of weaving pedestrian flow in subway stations. Acta Physica Sinica, 2012, 61(14): 144502.doi:10.7498/aps.61.144502 |
[15] |
Li Ze-Quan, Zhang Rui-Xin, Yang Zhao, Zhao Hong-Ze, Yu Jian-Hao.Influence complex network centrality on disaster spreading. Acta Physica Sinica, 2012, 61(23): 238902.doi:10.7498/aps.61.238902 |
[16] |
Lü Ling, Zhang Chao.Chaos synchronization of a complex network with different nodes. Acta Physica Sinica, 2009, 58(3): 1462-1466.doi:10.7498/aps.58.1462 |
[17] |
Li Ji, Wang Bing-Hong, Jiang Pin-Qun, Zhou Tao, Wang Wen-Xu.Growing complex network model with acceleratingly increasing number of nodes. Acta Physica Sinica, 2006, 55(8): 4051-4057.doi:10.7498/aps.55.4051 |
[18] |
Lei Li, Dong Li-Yun, Song Tao, Dai Shi-Qiang.Study on the traffic flow of weaving section in elevated road system with cellular automaton model. Acta Physica Sinica, 2006, 55(4): 1711-1717.doi:10.7498/aps.55.1711 |
[19] |
ZHENG NENG-WU, LI GUO-SHENG.A STUDY ON PARAMETERS OF THE ISOELECTRONIC SEQUENCE OF MANY-ELECTRON ATOMS AND IONS ( I )——INTRODUCTION OF k COEFFICIENT AND ADJUSTMENT OF THE NUMBER OF NODES. Acta Physica Sinica, 1993, 42(5): 727-734.doi:10.7498/aps.42.727 |
[20] |
CHEN CHUANG-TIAN, SHEN HE-SHENG.THE CALCULATION OF SHG COEFFICIENTS FOR CRYSTALS WITH ZINC BLENDE AND WURTZITE STRUCTURES BY USING THE EQUIVALENT ORBITAL METHOD. Acta Physica Sinica, 1982, 31(8): 1046-1056.doi:10.7498/aps.31.1046 |