In this paper, we study the electrical properties of ion-beam-etched Hg1-xCdxTe (x=0.236) crystal with the help of mobility spectrum analysis technique. In step-by-step chemical etching, it is shown that the p-HgCdTe is completely converted to the n-type one which includes a damaged surface electron layer with a low mobility and a bulk electron layer with a higher mobility after ion etching. The mobility spectra at different temperatures show that the mobility of the surface electrons is independent of temperature in the measurement temperature range while the bulk electrons exhibit a classical behavior of n-HgCdTe with characteristics that are strongly dependent on temperature. Hall data for different thicknesses show that the electrical properties of the bulk layer are uniform. Otherwise, the surface electron layer may be found to consist of a concentration about 2-3 order of magnitude higher than the bulk electron layer.