-
In this paper, the quantum phase transitions caused by the interactions between light and atoms, as well as between light and mechanical oscillators, are discussed theoretically in a coupled optomechanical cavity containing two optical field modes (N atoms and mechanical oscillator). By using Holstein-Primak off transformation method, new translational boson operators and four parameters are assumed. The ground state energy functional of the system and a set of equations composed of four parameters are given. The correctness of the assumed translation boson operators is proved by two special cases. In the case of resonance, the characteristics of the obtained solutions are shown by solving the equations, graphical method and Hessian matrix judgment. The stable zero solution is called the normal phase, the unstable zero solution is named the unstable vacuum macroscopic phase, and the stable non-zero solution is referred to as the superradiation phase. The phase can transition from normal phase to superradiation phase, and the point of phase transition can be changed by adjusting the coupling intensity of the two cavity light fields. When the nonlinear photon-phonon interaction caused by radiation pressure is considered, the phase diagram of the system is expanded from the original two phase regions to three phase regions, including the coexistent normal phase and superradiation phase, the bistable superradiation phase, and the unstable vacuum macroscopic phase region, where the bistable superradiation phase is similar to the optical bistable phenomenon. At the same time, there is also a turning point curve, which overlaps with the phase transition point curve, indicating the existence of multiple quantum phase transitions in the system. These predictions can be detected by measuring the average number of photons. The coupled optomechanical cavity that we studied, when considering the coupling of the two-mode optical field and the atomic ensemble but no mechanical oscillator, reflects the interaction between the two-mode optical field and the atom, thus concluding that the transformation point is small and the quantum phase transition is easy to occur. When the coupling between the mechanical oscillator and the two-mode optical field is not considered, the interaction between the single-mode optical field and the atom is reflected, returning to the quantum phase transition of the Dicke model under rotating wave approximation.
-
Keywords:
- coupled optomechanical cavity /
- Holstein-Primak off transformation /
- coupling intensity of the light fields /
- bistable superradiation phase
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] -
基态物理量 $g \leqslant g_{\text{c}}^{\text{R}}$ $g > g_{\text{c}}^{\text{R}}$ 平均光子数分布
${n_{{\text{pA}}}} = \alpha $0 $ \dfrac{1}{4}\dfrac{{{g^2}}}{{\varDelta _{\text{a}}^{2}}}\left( {1 - \dfrac{{g_{\text{c}}^{{\text{R4}}}}}{{{g^4}}}} \right) $ 布居数差分布
$\varDelta {n_{\text{a}}} = \beta - {1}/{2}$$ - \dfrac{1}{2}$ $ - \dfrac{{g_{\text{c}}^{{\text{R2}}}}}{{2{g^2}}} $ 平均基态能量
$ {H_0}/{\varDelta _0}$$ - \dfrac{1}{2}$ $ - \dfrac{{{g^2}}}{{4{\varDelta _{\text{a}}{\varDelta _0}}}}\left( {1 + \dfrac{{g_{\text{c}}^{{\text{R4}}}}}{{{g^4}}}} \right) $ 基态物理量 $g \leqslant g_{\text{c}}^J$ $g > g_{\text{c}}^J$ 平均光子数分布$\left\{ \begin{aligned} {n_{{{\text{p}}_{\text{a}}}}} = \alpha \\ {n_{{{\text{p}}_{\text{c}}}}} = \rho\end{aligned} \right.$ 0 $ \left\{ \begin{aligned}& \alpha = \dfrac{{{g^2}}}{{4\varDelta _{\text{a}}^{2}}}\left(1 - \dfrac{{g_{\text{c}}^{J4}}}{{{g^4}}}\right) \\ &\rho = \dfrac{{{J^2}}}{{4\varDelta _{\text{c}}^{2}}}\dfrac{{{g^2}}}{{\varDelta _{\text{a}}^{2}}}\left(1 - \dfrac{{g_{\text{c}}^{J4}}}{{{g^4}}}\right) \end{aligned} \right. $ 布居数差分布$\Delta {n_{\text{a}}} = \beta - {1}/{2}$ $ - \dfrac{1}{2}$ $ - \dfrac{{g_{\text{c}}^{J2}}}{{2{g^2}}} $ 平均基态能量$ {H_0}/{{\varDelta _0}} $ $ - \dfrac{1}{2}$ $ - \dfrac{{{g^2}}}{{4{\varDelta _{\text{a}}{\varDelta _0}}}}\left(1 + \dfrac{{g_{\text{c}}^{J4}}}{{{g^4}}}\right) $ 正常相区点A点 正常相区点B点 $ \zeta /{\omega _{\text{b}}} = 0 $ $ \zeta /{\omega _{\text{b}}} = 1.0 $ $ \zeta /{\omega _{\text{b}}} = 2.0 $ $ \zeta /{\omega _{\text{b}}} = 0 $ $ \zeta /{\omega _{\text{b}}} = 1.0 $ $ \zeta /{\omega _{\text{b}}} = 2.0 $ 0 $ \left\{ \begin{aligned} \alpha = {2}{.380} \\ \beta = {0}{.228} \\ \rho = {7}{.107}\end{aligned} \right.{\text{ }} $ $ \left\{ \begin{aligned} \alpha = {0}{.663} \\ \beta = {0}{.112} \\ \rho = {1}{.725}\end{aligned} \right.{\text{ }} $ $ 0 $ $ \left\{ \begin{aligned} \alpha = {2}{.739} \\ \beta = {0}{.313} \\ \rho = {6}{.835}\end{aligned} \right.{\text{ }} $ $ \left\{ \begin{aligned} \alpha = {0}{.868} \\ \beta = {0}{.209} \\ \rho = {1}{.571}\end{aligned} \right.{\text{ }} $ 超辐射区相点C点 超辐射区相点D点 $ \zeta /{\omega _{\text{b}}} = 0 $ $ \zeta /{\omega _{\text{b}}} = 1.0 $ $ \zeta /{\omega _{\text{b}}} = 2.0 $ $ \zeta /{\omega _{\text{b}}} = 0 $ $ \zeta /{\omega _{\text{b}}} = 1.0 $ $ \zeta /{\omega _{\text{b}}} = 2.0 $ $ \left\{ \begin{aligned} \alpha = {0}{.534} \\ \beta = {0}{.260} \\ \rho = {0}{.134}\end{aligned} \right.{\text{ }} $ $ \left\{ \begin{aligned} {\alpha _1} = {0}{.541} \\ {\beta _1} = {0}{.261} \\ {\rho _1} = {0}{.139}\end{aligned} \right.{\text{ }} $
$ \left\{ \begin{aligned} {\alpha _2} = {3}{.474} \\ {\beta _2} = {0}{.395} \\ {\rho _2} = {6}{.280}\end{aligned} \right.{\text{ }} $$ \left\{ \begin{aligned} {\alpha _1} = {0}{.568} \\ {\beta _1} = {0}{.262} \\ {\rho _1} = {0}{.162}\end{aligned} \right.{\text{ }} $
$ \left\{ \begin{aligned} {\alpha _2} = {1}{.295} \\ {\beta _2} = {0}{.334} \\ {\rho _2} = {1}{.203}\end{aligned} \right.{\text{ }} $$ \left\{ \begin{aligned} \alpha = 0.889 \\ \beta = {0}{.333} \\ \rho = {0}{.222}\end{aligned} \right. $ $ \left\{ \begin{aligned} {\alpha _1} = {0}{.905} \\ {\beta _1} = {0}{.335} \\ {\rho _1} = {0}{.237}\end{aligned} \right. $
$ \left\{ \begin{aligned} {\alpha _2} = {3}{.853} \\ {\beta _2} = {0}{.416} \\ {\rho _2} = {5}{.989}\end{aligned} \right.{\text{ }} $$ \left\{ \begin{aligned} {\alpha _1} = {1}{.000} \\ {\beta _1} = {0}{.342} \\ {\rho _1} = {0}{.332}\end{aligned} \right.{\text{ }} $
$ \left\{ \begin{aligned} {\alpha _2} = {1}{.462} \\ {\beta _2} = {0}{.367} \\ {\rho _2} = {0}{.946}\end{aligned} \right.{\text{ }} $ -
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28]
Catalog
Metrics
- Abstract views: 329
- PDF Downloads: 17
- Cited By: 0