搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

downloadPDF
引用本文:
Citation:

兰伟霞, 顾嘉陆, 高晓辉, 廖英杰, 钟宋义, 张卫东, 彭艳, 孙钰, 魏斌

Research progress of organic solar cells based on photonic crystals

Lan Wei-Xia, Gu Jia-Lu, Gao Xiao-Hui, Liao Ying-Jie, Zhong Song-Yi, Zhang Wei-Dong, Peng Yan, Sun Yu, Wei Bin
PDF
HTML
导出引用
  • 随着近几年来光伏产业的迅速发展, 有机太阳能电池因其成本低、重量轻、易于成批次生产、制作工艺简单和可制备成柔性器件等优点备受研究人员关注. 目前, 有机太阳能电池存在光电转换效率偏低、半透明器件显色性较差等问题, 光子晶体的引入为解决上述问题提供了新思路. 本文从光子晶体的结构特性和优化原理入手, 系统性地介绍了一维光子晶体和二维光子晶体对有机太阳能电池的优化效果, 着重分析了一维光子晶体和二维光子晶体引起有机太阳能电池短路电流和光电转换效率提升的原因; 另外, 本文也详细阐述了一维光子晶体可用于调节半透明器件显色性的原因. 最后, 结合现有的有机光电器件研究进展, 本文对基于光子晶体的有机太阳能电池未来的研究方向进行了展望.
    With the rapid development of photovoltaic industry in recent years, organic solar cells have attracted much attention due to their advantages of low cost, light weight, capacity of batch production, simple production process and flexible performance. However, there are still some limitations hindering their commercialization process, including low photoelectric conversion efficiency and poor transmission color rendering. The introduction of photonic crystals provides a new way to solve these two problems. Starting from the optimization principle of photonic crystals, the effects of both one-dimensional photonic crystals and two-dimensional photonic crystals on organic solar cells, especially the short circuit current and photoelectric conversion efficiency, are systematically summarized in this paper. Then, we focus on the reasons for the performance improvement of organic solar cells based on one-dimensional photonic crystals and two-dimensional photonic crystals. The results of the experiments and characterization show that the performance improvement is mainly attributed to the photonic crystal acting as the reflector in the device. Photonic bandgap, a vivid property that the photonic crystals have, can block the light transmitting organic solar cells at a certain frequency. So, the light within the photonic bandgap is reflected back into the device, thus promoting the secondary absorption of light by the active layer which can result in the stronger light absorption capacity of the active layer, and then improving the performance of the device. In addition, the reason why one-dimensional photonic crystals can be used to regulate the color rendering of semitransparent organic solar cell is described in detail. This is of great significance to photovoltaic construction industry because semitransparent organic solar cells with excellent color rendering property can be widely used in it. However, due to the limitation of photonic crystal optimization mechanism, the reported applications so far have failed to improve the filling factor and open circuit voltage of the device, and due to the limitation of its own structure, three-dimensional photonic crystals have not been reported to be used in organic solar cells. Finally, by combining the existing research progress of organic optoelectronic devices, we look into the future research direction of organic solar cells based on photonic crystals.
        通信作者:钟宋义,zhongsongyi@shu.edu.cn; 张卫东,zhangwd@sjtu.edu.cn;
      • 基金项目:国家自然科学基金重点项目(批准号: 2019YFB1703604)和国家自然科学基金青年科学基金(批准号: 62005152)资助的课题
        Corresponding author:Zhong Song-Yi,zhongsongyi@shu.edu.cn; Zhang Wei-Dong,zhangwd@sjtu.edu.cn;
      • Funds:Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 2019YFB1703604) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 62005152)
      [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

    • 器件类型 JSC/
      (mA·cm–2)
      开路电压
      VOC/V
      填充因子(fill
      factor, FF)/%
      PCE/%
      无1DPCs 6.00 0.64 50.0 1.92
      (WO3/LiF)2 6.39 0.64 50.1 2.05
      (WO3/LiF)4 7.01 0.64 50.4 2.26
      (WO3/LiF)6 7.51 0.64 48.7 2.34
      (WO3/LiF)8 7.90 0.64 48.7 2.46
      下载: 导出CSV

      器件类型 JSC/(mA·cm–2) VOC/V FF/% PCE/%
      无Au NPs-AAO 3.98 0.61 43 1.07
      有Au NPs-AAO 6.05 0.61 51 1.51
      下载: 导出CSV
    • [1]

      [2]

      [3]

      [4]

      [5]

      [6]

      [7]

      [8]

      [9]

      [10]

      [11]

      [12]

      [13]

      [14]

      [15]

      [16]

      [17]

      [18]

      [19]

      [20]

      [21]

      [22]

      [23]

      [24]

      [25]

      [26]

      [27]

      [28]

      [29]

      [30]

      [31]

    计量
    • 文章访问数:8278
    • PDF下载量:261
    • 被引次数:0
    出版历程
    • 收稿日期:2020-10-30
    • 修回日期:2021-01-19
    • 上网日期:2021-06-07
    • 刊出日期:2021-06-20

      返回文章
      返回