[1] |
Li Kai-Hui, Liu Han-Ze, Xin Xiang-Peng.Lie symmetry analysis, optimal system, exact solutions and conservation laws of a class of high-order nonlinear wave equations. Acta Physica Sinica, 2016, 65(14): 140201.doi:10.7498/aps.65.140201 |
[2] |
Zhang Fang, Li Wei, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun.Conformal invariance and conserved quantity of Mei symmetry for Appell equations in nonholonomic systems of Chetaev’s type with variable mass. Acta Physica Sinica, 2014, 63(16): 164501.doi:10.7498/aps.63.164501 |
[3] |
Jia Li-Qun, Sun Xian-Ting, Zhang Mei-Ling, Zhang Yao-Yu, Han Yue-Lin.Generalized Hojman conserved quantity deduced from generalized Lie symmetry of Appell equations for a variable mass mechanical system in relative motion. Acta Physica Sinica, 2014, 63(1): 010201.doi:10.7498/aps.63.010201 |
[4] |
Wang Ting-Zhi, Sun Xian-Ting, Han Yue-Lin.Conformal invariance and conserved quantity for a variable mass holonomic system in relative motion. Acta Physica Sinica, 2013, 62(23): 231101.doi:10.7498/aps.62.231101 |
[5] |
Zhang Bin, Fang Jian-Hui, Zhang Ke-Jun.Symmetry and conserved quantity of Lagrangians for nonholonomic variable mass system. Acta Physica Sinica, 2012, 61(2): 021101.doi:10.7498/aps.61.021101 |
[6] |
Yang Xin-Fang, Sun Xian-Ting, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun.Mei symmetry and Mei conserved quantity of Appell equations for nonholonomic systems of Chetaevs type with variable mass. Acta Physica Sinica, 2011, 60(11): 111101.doi:10.7498/aps.60.111101 |
[7] |
Xia Li-Li, Li Yuan-Cheng, Wang Xian-Jun.Non-Noether conserved quantities for nonholonomic controllable mechanical systems with relativistic rotational variable mass. Acta Physica Sinica, 2009, 58(1): 28-33.doi:10.7498/aps.58.28 |
[8] |
Xia Li-Li, Li Yuan-Cheng.Non-Noether conserved quantity for relativistic nonholonomic controllable mechanical system with variable mass. Acta Physica Sinica, 2008, 57(8): 4652-4656.doi:10.7498/aps.57.4652 |
[9] |
Zhang Peng-Yu, Fang Jian-Hui.Lie symmetry and non-Noether conserved quantities of variable mass Birkhoffian system. Acta Physica Sinica, 2006, 55(8): 3813-3816.doi:10.7498/aps.55.3813 |
[10] |
Zhang Yi.Symmetries and conserved quantities of mechanical systems with unilateral holonomic constraints in phase space. Acta Physica Sinica, 2005, 54(10): 4488-4495.doi:10.7498/aps.54.4488 |
[11] |
Ge Wei-Kuan.Effects of mass variation on form invariance and conserved quantity of mechanical systems. Acta Physica Sinica, 2005, 54(6): 2478-2481.doi:10.7498/aps.54.2478 |
[12] |
Zhang Yi, Ge Wei-Kuan.A new conservation law from Mei symmetry for the relativistic mechanical system. Acta Physica Sinica, 2005, 54(4): 1464-1467.doi:10.7498/aps.54.1464 |
[13] |
Luo Shao-Kai, Mei Feng-Xiang.A non-Noether conserved quantity, i.e. Hojman conserved quantity, for nonholonomic mechanical systems. Acta Physica Sinica, 2004, 53(3): 6-10.doi:10.7498/aps.53.6 |
[14] |
Jia Li-Qun.A theory of relativistic analytical statics of rotational systems. Acta Physica Sinica, 2003, 52(5): 1039-1043.doi:10.7498/aps.52.1039 |
[15] |
Fang Jian-Hui, Yan Xiang-Hong, Chen Pei-Sheng.Form invariance and Noether symmetry of a relativistic mechanical system. Acta Physica Sinica, 2003, 52(7): 1561-1564.doi:10.7498/aps.52.1561 |
[16] |
Fang Jian-Hui, Chen Pei-Sheng, Zhang Jun, Li Hong.Form invariance and Lie symmetry of relativistic mechanical system. Acta Physica Sinica, 2003, 52(12): 2945-2948.doi:10.7498/aps.52.2945 |
[17] |
QIAO YONG-FEN, ZHAO SHU-HONG.EQUATIONS OF MOTION OF VARIABLE MASS NONHOLONOMIC DYNAMICAL SYSTEMS IN POINCARé-CHETAEV VARIABLES. Acta Physica Sinica, 2001, 50(5): 805-810.doi:10.7498/aps.50.805 |
[18] |
LUO SHAO-KAI, FU JING-LI, CHEN XIANG-WEI.BASIC THEORY OF RELATIVISTIC BIRKHOFFIAN DYNAMICS OF ROTATIONAL SYSTEM. Acta Physica Sinica, 2001, 50(3): 383-389.doi:10.7498/aps.50.383 |
[19] |
FU JING-LI, CHEN LI-QUN, LUO SHAO-KAI, CHEN XIANG-WEI, WANG XIN-MIN.STUDY ON DYNAMICS OF RELATIVISTIC BIRKHOFF SYSTEMS. Acta Physica Sinica, 2001, 50(12): 2289-2295.doi:10.7498/aps.50.2289 |
[20] |
FANG JIAN-HUI, ZHAO SONG-QING.LIE SYMMETRIES AND CONSERED QUANTITIES OF RELATIVISTIC ROTATIONAL VARIABLE MASS SYSTEM. Acta Physica Sinica, 2001, 50(3): 390-393.doi:10.7498/aps.50.390 |