[1] |
Zhang Fang, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun.Conformal invariance and conserved quantity of Mei symmetry for Appell equation in a holonomic system in relative motion. Acta Physica Sinica, 2015, 64(13): 134501.doi:10.7498/aps.64.134501 |
[2] |
Liu Hong-Wei.Conformal symmetry and Mei conserved quantity for ageneralized Hamilton system. Acta Physica Sinica, 2014, 63(5): 050201.doi:10.7498/aps.63.050201 |
[3] |
Wang Ting-Zhi, Sun Xian-Ting, Han Yue-Lin.Conformal invariance and conserved quantity of relative motion holonomic dynamical system in phase space. Acta Physica Sinica, 2014, 63(10): 104502.doi:10.7498/aps.63.104502 |
[4] |
Wang Ting-Zhi, Sun Xian-Ting, Han Yue-Lin.A new type of conserved quantity deduced from conformal invariance in nonholonomic mechanical system. Acta Physica Sinica, 2014, 63(9): 090201.doi:10.7498/aps.63.090201 |
[5] |
Jia Li-Qun, Sun Xian-Ting, Zhang Mei-Ling, Zhang Yao-Yu, Han Yue-Lin.Generalized Hojman conserved quantity deduced from generalized Lie symmetry of Appell equations for a variable mass mechanical system in relative motion. Acta Physica Sinica, 2014, 63(1): 010201.doi:10.7498/aps.63.010201 |
[6] |
Sun Xian-Ting, Zhang Yao-Yu, Zhang Fang, Jia Li-Qun.Conformal invariance and Hojman conserved quantity of Lie symmetry for Appell equations in a holonomic system. Acta Physica Sinica, 2014, 63(14): 140201.doi:10.7498/aps.63.140201 |
[7] |
Wang Ting-Zhi, Sun Xian-Ting, Han Yue-Lin.Conformal invariance and conserved quantity for a variable mass holonomic system in relative motion. Acta Physica Sinica, 2013, 62(23): 231101.doi:10.7498/aps.62.231101 |
[8] |
Han Yue-Lin, Sun Xian-Ting, Zhang Yao-Yu, Jia Li-Qun.Conformal invariance and conserved quantity of Mei symmetry for Appell equations in holonomic system. Acta Physica Sinica, 2013, 62(16): 160201.doi:10.7498/aps.62.160201 |
[9] |
Liu Hong-Wei, Li Ling-Fei, Yang Shi-Tong.Conformal invariance, Mei symmetry and the conserved quantity of the Kepler equation. Acta Physica Sinica, 2012, 61(20): 200202.doi:10.7498/aps.61.200202 |
[10] |
Chen Rong, Xu Xue-Jun.Conformal invariance, Noether symmetry and Lie symmetry for systems with unilateral Chetaev non-holonomic constraints. Acta Physica Sinica, 2012, 61(14): 141101.doi:10.7498/aps.61.141101 |
[11] |
Cai Jian-Le, Shi Sheng-Shui.Conformal invariance and conserved quantity of Mei symmetry for the nonholonomic system of Chetaev's type. Acta Physica Sinica, 2012, 61(3): 030201.doi:10.7498/aps.61.030201 |
[12] |
Chen Rong, Xu Xue-Jun.Conformal invariance, Noether symmetry and Lie symmetry for holonomic mechanical system with variable mass. Acta Physica Sinica, 2012, 61(2): 021102.doi:10.7498/aps.61.021102 |
[13] |
Yang Xin-Fang, Sun Xian-Ting, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun.Mei symmetry and Mei conserved quantity of Appell equations for nonholonomic systems of Chetaevs type with variable mass. Acta Physica Sinica, 2011, 60(11): 111101.doi:10.7498/aps.60.111101 |
[14] |
Li Yuan-Cheng, Xia Li-Li, Wang Xiao-Ming, Liu Xiao-Wei.Lie-Mei symmetry and conserved quantities of Appell equation for a holonomic mechanical system. Acta Physica Sinica, 2010, 59(6): 3639-3642.doi:10.7498/aps.59.3639 |
[15] |
Cai Jian-Le.Conformal invariance and conserved quantities of Mei symmetry for general holonomic systems. Acta Physica Sinica, 2009, 58(1): 22-27.doi:10.7498/aps.58.22 |
[16] |
Cai Jian-Le, Mei Feng-Xiang.Conformal invariance and conserved quantity of Lagrange systems under Lie point transformation. Acta Physica Sinica, 2008, 57(9): 5369-5373.doi:10.7498/aps.57.5369 |
[17] |
Liu Chang, Mei Feng-Xiang, Guo Yong-Xin.Conformal symmetry and Hojman conserved quantity of Lagrange system. Acta Physica Sinica, 2008, 57(11): 6704-6708.doi:10.7498/aps.57.6704 |
[18] |
Liu Chang, Liu Shi-Xing, Mei Feng-Xiang, Guo Yong-Xin.Conformal invariance and Hojman conserved quantities of generalized Hamilton systems. Acta Physica Sinica, 2008, 57(11): 6709-6713.doi:10.7498/aps.57.6709 |
[19] |
Jing Hong-Xing, Li Yuan-Cheng, Xia Li-Li.Perturbation of Lie symmetries and a type of generalized Hojman adiabatic invariants for variable mass systems with unilateral holonomic constraints. Acta Physica Sinica, 2007, 56(6): 3043-3049.doi:10.7498/aps.56.3043 |
[20] |
QIAO YONG-FEN, ZHAO SHU-HONG.EQUATIONS OF MOTION OF VARIABLE MASS NONHOLONOMIC DYNAMICAL SYSTEMS IN POINCARé-CHETAEV VARIABLES. Acta Physica Sinica, 2001, 50(5): 805-810.doi:10.7498/aps.50.805 |