[1] |
Sun Xian-Ting, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun.Form invariance and Mei conserved quantity for generalized Hamilton systems after adding additional terms. Acta Physica Sinica, 2015, 64(6): 064502.doi:10.7498/aps.64.064502 |
[2] |
Zhang Fang, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun.Conformal invariance and conserved quantity of Mei symmetry for Appell equation in a holonomic system in relative motion. Acta Physica Sinica, 2015, 64(13): 134501.doi:10.7498/aps.64.134501 |
[3] |
Wang Ting-Zhi, Sun Xian-Ting, Han Yue-Lin.Conformal invariance and conserved quantity of relative motion holonomic dynamical system in phase space. Acta Physica Sinica, 2014, 63(10): 104502.doi:10.7498/aps.63.104502 |
[4] |
Wang Ting-Zhi, Sun Xian-Ting, Han Yue-Lin.A new type of conserved quantity deduced from conformal invariance in nonholonomic mechanical system. Acta Physica Sinica, 2014, 63(9): 090201.doi:10.7498/aps.63.090201 |
[5] |
Liu Hong-Wei.Conformal symmetry and Mei conserved quantity for ageneralized Hamilton system. Acta Physica Sinica, 2014, 63(5): 050201.doi:10.7498/aps.63.050201 |
[6] |
Zhang Fang, Li Wei, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun.Conformal invariance and conserved quantity of Mei symmetry for Appell equations in nonholonomic systems of Chetaev’s type with variable mass. Acta Physica Sinica, 2014, 63(16): 164501.doi:10.7498/aps.63.164501 |
[7] |
Sun Xian-Ting, Zhang Yao-Yu, Zhang Fang, Jia Li-Qun.Conformal invariance and Hojman conserved quantity of Lie symmetry for Appell equations in a holonomic system. Acta Physica Sinica, 2014, 63(14): 140201.doi:10.7498/aps.63.140201 |
[8] |
Wang Ting-Zhi, Sun Xian-Ting, Han Yue-Lin.Conformal invariance and conserved quantity for a variable mass holonomic system in relative motion. Acta Physica Sinica, 2013, 62(23): 231101.doi:10.7498/aps.62.231101 |
[9] |
Han Yue-Lin, Sun Xian-Ting, Zhang Yao-Yu, Jia Li-Qun.Conformal invariance and conserved quantity of Mei symmetry for Appell equations in holonomic system. Acta Physica Sinica, 2013, 62(16): 160201.doi:10.7498/aps.62.160201 |
[10] |
Cai Jian-Le, Shi Sheng-Shui.Conformal invariance and conserved quantity of Mei symmetry for the nonholonomic system of Chetaev's type. Acta Physica Sinica, 2012, 61(3): 030201.doi:10.7498/aps.61.030201 |
[11] |
Liu Hong-Wei, Li Ling-Fei, Yang Shi-Tong.Conformal invariance, Mei symmetry and the conserved quantity of the Kepler equation. Acta Physica Sinica, 2012, 61(20): 200202.doi:10.7498/aps.61.200202 |
[12] |
Jiang Wen-An, Luo Shao-Kai.Mei symmetry leading to Mei conserved quantity of generalized Hamiltonian system. Acta Physica Sinica, 2011, 60(6): 060201.doi:10.7498/aps.60.060201 |
[13] |
Xie Yin-Li, Jia Li-Qun, Yang Xin-Fang.Lie symmetry and Hojman conserved quantity of Nielsen equation in a dynamical system of the relative motion. Acta Physica Sinica, 2011, 60(3): 030201.doi:10.7498/aps.60.030201 |
[14] |
Cai Jian-Le.Conformal invariance and conserved quantities of Mei symmetry for general holonomic systems. Acta Physica Sinica, 2009, 58(1): 22-27.doi:10.7498/aps.58.22 |
[15] |
Cai Jian-Le, Mei Feng-Xiang.Conformal invariance and conserved quantity of Lagrange systems under Lie point transformation. Acta Physica Sinica, 2008, 57(9): 5369-5373.doi:10.7498/aps.57.5369 |
[16] |
Liu Chang, Mei Feng-Xiang, Guo Yong-Xin.Conformal symmetry and Hojman conserved quantity of Lagrange system. Acta Physica Sinica, 2008, 57(11): 6704-6708.doi:10.7498/aps.57.6704 |
[17] |
Hu Chu-Le, Xie Jia-Fang.Form invariance and Hojman conserved quantity of Maggi equation. Acta Physica Sinica, 2007, 56(9): 5045-5048.doi:10.7498/aps.56.5045 |
[18] |
Jia Li-Qun, Zheng Shi-Wang.Mei symmetry of generalized Hamilton systems with additional terms. Acta Physica Sinica, 2006, 55(8): 3829-3832.doi:10.7498/aps.55.3829 |
[19] |
Qiao Yong-Fen, Li Ren-Jie, Sun Dan-Na.Hojman’s conservation theorems for Raitzin’s canonical equations of motion of nonlinear nonholonomic systems. Acta Physica Sinica, 2005, 54(2): 490-495.doi:10.7498/aps.54.490 |
[20] |
Luo Shao-Kai, Guo Yong-Xin, Mei Feng-Xiang.Form invariance and Hojman conserved quantity for nonholonomic mechanical systems. Acta Physica Sinica, 2004, 53(8): 2413-2418.doi:10.7498/aps.53.2413 |