[1] |
Sun Xian-Ting, Zhang Yao-Yu, Zhang Fang, Jia Li-Qun.Conformal invariance and Hojman conserved quantity of Lie symmetry for Appell equations in a holonomic system. Acta Physica Sinica, 2014, 63(14): 140201.doi:10.7498/aps.63.140201 |
[2] |
Xu Chao, Li Yuan-Cheng.Noether-Lie symmetry and conserved quantities of Nielsen equations for a singular variable mass nonholonomic system with unilateral constraints. Acta Physica Sinica, 2013, 62(17): 171101.doi:10.7498/aps.62.171101 |
[3] |
Xu Chao, Li Yuan-Cheng.Lie-Mei symmetry and conserved quantities of Nielsen equations for a singular nonholonomic system of Chetaev'type. Acta Physica Sinica, 2013, 62(12): 120201.doi:10.7498/aps.62.120201 |
[4] |
Liu Hong-Wei, Li Ling-Fei, Yang Shi-Tong.Conformal invariance, Mei symmetry and the conserved quantity of the Kepler equation. Acta Physica Sinica, 2012, 61(20): 200202.doi:10.7498/aps.61.200202 |
[5] |
Wang Xiao-Xiao, Zhang Mei-Ling, Han Yue-Lin, Jia Li-Qun.Mei symmetry and Mei conserved quantity of Nielsen equation in a dynamical system of the relative motion with nonholonomic constraint of Chetaev's type. Acta Physica Sinica, 2012, 61(20): 200203.doi:10.7498/aps.61.200203 |
[6] |
Wang Xiao-Xiao, Sun Xian-Ting, Zhang Mei-Ling, Xie Yin-Li, Jia Li-Qun.Noether symmetry and Noether conserved quantity of Nielsen equation in a dynamical system of the relative motion with nonholonomic constraint of Chetaev's type. Acta Physica Sinica, 2012, 61(6): 064501.doi:10.7498/aps.61.064501 |
[7] |
Jia Li-Qun, Sun Xian-Ting, Zhang Mei-Ling, Wang Xiao-Xiao, Xie Yin-Li.A type of new conserved quantity of Mei symmetry for Nielsen equations. Acta Physica Sinica, 2011, 60(8): 084501.doi:10.7498/aps.60.084501 |
[8] |
Luo Shao-Kai, Jia Li-Qun, Xie Yin-Li.Mei conserved quantity deduced from Mei symmetry of Appell equation in a dynamical system of relative motion. Acta Physica Sinica, 2011, 60(4): 040201.doi:10.7498/aps.60.040201 |
[9] |
Dong Wen-Shan, Huang Bao-Xin.Lie symmetries and Noether conserved quantities of generalized nonholonomic mechanical systems. Acta Physica Sinica, 2010, 59(1): 1-6.doi:10.7498/aps.59.1 |
[10] |
Li Yuan-Cheng, Wang Xiao-Ming, Xia Li-Li.Unified symmetry and conserved quantities of Nielsen equation for a holonomic mechanical system. Acta Physica Sinica, 2010, 59(5): 2935-2938.doi:10.7498/aps.59.2935 |
[11] |
Gu Shu-Long, Zhang Hong-Bin.Noether symmetry and the Hojman conserved quantity of the Kepler equation. Acta Physica Sinica, 2010, 59(2): 716-718.doi:10.7498/aps.59.716 |
[12] |
Dong Wen-Shan, Fang Jian-Hui, Huang Bao-Xin.Hojman conserved quantities of generalized linear nonholonomic mechanical systems. Acta Physica Sinica, 2010, 59(2): 724-728.doi:10.7498/aps.59.724 |
[13] |
Mei Feng-Xiang, Wu Hui-Bin.Lagrange symmetry for a dynamical system of relative motion. Acta Physica Sinica, 2009, 58(9): 5919-5922.doi:10.7498/aps.58.5919 |
[14] |
Jia Li-Qun, Cui Jin-Chao, Luo Shao-Kai, Zhang Yao-Yu.Mei symmetry and Mei conserved quantity of Nielsen equations for nonholonomic systems of unilateral non-Chetaev’s type in the event space. Acta Physica Sinica, 2009, 58(4): 2141-2146.doi:10.7498/aps.58.2141 |
[15] |
Jia Li-Qun, Cui Jin-Chao, Zhang Yao-Yu, Luo Shao-Kai.Lie symmetry and conserved quantity of Appell equation for a Chetaev’s type constrained mechanical system. Acta Physica Sinica, 2009, 58(1): 16-21.doi:10.7498/aps.58.16 |
[16] |
Zhang Kai, Wang Ce, Zhou Li-Bin.Lie symmetry and conserved quantities of Nambu mechanical systems. Acta Physica Sinica, 2008, 57(11): 6718-6721.doi:10.7498/aps.57.6718 |
[17] |
Jia Li-Qun, Luo Shao-Kai, Zhang Yao-Yu.Mei symmetry and Mei conserved quantity of Nielsen equation for a nonholonomic system. Acta Physica Sinica, 2008, 57(4): 2006-2010.doi:10.7498/aps.57.2006 |
[18] |
Hu Chu-Le, Xie Jia-Fang.Form invariance and Hojman conserved quantity of Maggi equation. Acta Physica Sinica, 2007, 56(9): 5045-5048.doi:10.7498/aps.56.5045 |
[19] |
Gu Shu-Long, Zhang Hong-Bin.Mei symmetry, Noether symmetry and Lie symmetry of a Vacco system. Acta Physica Sinica, 2005, 54(9): 3983-3986.doi:10.7498/aps.54.3983 |
[20] |
Fang Jian-Hui, Zhang Peng-Yu.The conserved quantity of Hojman for mechanicalsystems with variable mass in phase space. Acta Physica Sinica, 2004, 53(12): 4041-4044.doi:10.7498/aps.53.4041 |