[1] |
Liu Shi-Xing, Song Duan, Jia Lin, Liu Chang, Guo Yong-Xin.Application research of symplectic Runge-Kutta method of solving Lagrange-Maxwell equation. Acta Physica Sinica, 2013, 62(3): 034501.doi:10.7498/aps.62.034501 |
[2] |
Xu Rui-Li, Fang Jian-Hui, Zhang Bin.The Noether conserved quantity of Lie symmetry for discrete difference sequence Hamilton system with variable mass. Acta Physica Sinica, 2013, 62(15): 154501.doi:10.7498/aps.62.154501 |
[3] |
Xu Chao, Li Yuan-Cheng.Noether-Lie symmetry and conserved quantities of Nielsen equations for a singular variable mass nonholonomic system with unilateral constraints. Acta Physica Sinica, 2013, 62(17): 171101.doi:10.7498/aps.62.171101 |
[4] |
Xu Chao, Li Yuan-Cheng.Lie-Mei symmetry and conserved quantities of Nielsen equations for a singular nonholonomic system of Chetaev'type. Acta Physica Sinica, 2013, 62(12): 120201.doi:10.7498/aps.62.120201 |
[5] |
Wang Xiao-Xiao, Zhang Mei-Ling, Han Yue-Lin, Jia Li-Qun.Mei symmetry and Mei conserved quantity of Nielsen equation in a dynamical system of the relative motion with nonholonomic constraint of Chetaev's type. Acta Physica Sinica, 2012, 61(20): 200203.doi:10.7498/aps.61.200203 |
[6] |
Jia Li-Qun, Sun Xian-Ting, Zhang Mei-Ling, Wang Xiao-Xiao, Xie Yin-Li.A type of new conserved quantity of Mei symmetry for Nielsen equations. Acta Physica Sinica, 2011, 60(8): 084501.doi:10.7498/aps.60.084501 |
[7] |
Luo Shao-Kai, Jia Li-Qun, Xie Yin-Li.Mei conserved quantity deduced from Mei symmetry of Appell equation in a dynamical system of relative motion. Acta Physica Sinica, 2011, 60(4): 040201.doi:10.7498/aps.60.040201 |
[8] |
Xie Yin-Li, Jia Li-Qun, Yang Xin-Fang.Lie symmetry and Hojman conserved quantity of Nielsen equation in a dynamical system of the relative motion. Acta Physica Sinica, 2011, 60(3): 030201.doi:10.7498/aps.60.030201 |
[9] |
Liu Chang, Zhao Yong-Hong, Chen Xiang-Wei.Geometric representation of Noether symmetry for dynamical systems. Acta Physica Sinica, 2010, 59(1): 11-14.doi:10.7498/aps.59.11 |
[10] |
Li Yuan-Cheng, Wang Xiao-Ming, Xia Li-Li.Unified symmetry and conserved quantities of Nielsen equation for a holonomic mechanical system. Acta Physica Sinica, 2010, 59(5): 2935-2938.doi:10.7498/aps.59.2935 |
[11] |
Jia Li-Qun, Cui Jin-Chao, Zhang Yao-Yu, Luo Shao-Kai.Lie symmetry and conserved quantity of Appell equation for a Chetaev’s type constrained mechanical system. Acta Physica Sinica, 2009, 58(1): 16-21.doi:10.7498/aps.58.16 |
[12] |
Cui Jian-Xin, Gao Hai-Bo, Hong Wen-Xue.Mei symmetries and the Noether conserved quantities of super-thin elastic rod. Acta Physica Sinica, 2009, 58(11): 7426-7430.doi:10.7498/aps.58.7426 |
[13] |
Shi Shen-Yang, Huang Xiao-Hong, Zhang Xiao-Bo, Jin Li.The Lie symmetry and Noether conserved quantity of discrete difference variational Hamilton system. Acta Physica Sinica, 2009, 58(6): 3625-3631.doi:10.7498/aps.58.3625 |
[14] |
Mei Feng-Xiang, Wu Hui-Bin.Lagrange symmetry for a dynamical system of relative motion. Acta Physica Sinica, 2009, 58(9): 5919-5922.doi:10.7498/aps.58.5919 |
[15] |
Jia Li-Qun, Cui Jin-Chao, Luo Shao-Kai, Zhang Yao-Yu.Mei symmetry and Mei conserved quantity of Nielsen equations for nonholonomic systems of unilateral non-Chetaev’s type in the event space. Acta Physica Sinica, 2009, 58(4): 2141-2146.doi:10.7498/aps.58.2141 |
[16] |
Jia Li-Qun, Luo Shao-Kai, Zhang Yao-Yu.Mei symmetry and Mei conserved quantity of Nielsen equation for a nonholonomic system. Acta Physica Sinica, 2008, 57(4): 2006-2010.doi:10.7498/aps.57.2006 |
[17] |
Fang Jian-Hui, Ding Ning, Wang Peng.Noether-Lie symmetry of non-holonomic mechanical system. Acta Physica Sinica, 2006, 55(8): 3817-3820.doi:10.7498/aps.55.3817 |
[18] |
Ge Wei-Kuan, Zhang Yi.Lie-form invariance of holonomic mechanical systems. Acta Physica Sinica, 2005, 54(11): 4985-4988.doi:10.7498/aps.54.4985 |
[19] |
Xu Xue-Jun, Mei Feng-Xiang, Qin Mao-Chang.A nonNoether conserved quantity constructed using form invariance for Nielsen equation of a non-conservativemechanical system. Acta Physica Sinica, 2004, 53(12): 4021-4025.doi:10.7498/aps.53.4021 |
[20] |
Fang Jian-Hui, Xue Qing-Zhong, Zhao Shou-Qing.. Acta Physica Sinica, 2002, 51(10): 2183-2185.doi:10.7498/aps.51.2183 |