[1] |
Chen Xiang-Wei, Zhao Yong-Hong, Liu Chang.Conformal invariance and conserved quantity for holonomic mechanical systems with variable mass. Acta Physica Sinica, 2009, 58(8): 5150-5154.doi:10.7498/aps.58.5150 |
[2] |
Xia Li-Li, Li Yuan-Cheng, Wang Xian-Jun.Non-Noether conserved quantities for nonholonomic controllable mechanical systems with relativistic rotational variable mass. Acta Physica Sinica, 2009, 58(1): 28-33.doi:10.7498/aps.58.28 |
[3] |
Huang Xiao-Hong, Zhang Xiao-Bo, Shi Shen-Yang.The Mei symmetry of discrete difference sequence mechanical system with variable mass. Acta Physica Sinica, 2008, 57(10): 6056-6062.doi:10.7498/aps.57.6056 |
[4] |
Liu Chang, Liu Shi-Xing, Mei Feng-Xiang, Guo Yong-Xin.Conformal invariance and Hojman conserved quantities of generalized Hamilton systems. Acta Physica Sinica, 2008, 57(11): 6709-6713.doi:10.7498/aps.57.6709 |
[5] |
Liu Chang, Mei Feng-Xiang, Guo Yong-Xin.Conformal symmetry and Hojman conserved quantity of Lagrange system. Acta Physica Sinica, 2008, 57(11): 6704-6708.doi:10.7498/aps.57.6704 |
[6] |
Liu Yang-Kui, Fang Jian-Hui.Two types of conserved quantities of Lie-Mei symmetry for a variable mass system in phase space. Acta Physica Sinica, 2008, 57(11): 6699-6703.doi:10.7498/aps.57.6699 |
[7] |
Xia Li-Li, Li Yuan-Cheng.Non-Noether conserved quantity for relativistic nonholonomic controllable mechanical system with variable mass. Acta Physica Sinica, 2008, 57(8): 4652-4656.doi:10.7498/aps.57.4652 |
[8] |
Shi Shen-Yang, Fu Jing-Li, Chen Li-Qun.Lie symmetries of discrete Lagrange systems. Acta Physica Sinica, 2007, 56(6): 3060-3063.doi:10.7498/aps.56.3060 |
[9] |
Zhang Peng-Yu, Fang Jian-Hui.Lie symmetry and non-Noether conserved quantities of variable mass Birkhoffian system. Acta Physica Sinica, 2006, 55(8): 3813-3816.doi:10.7498/aps.55.3813 |
[10] |
Qiao Yong-Fen, Zhao Shu-Hong.Form invariance and non-Noether conserved quantity of generalized Raitzin’s canonical equations of non-conservative system. Acta Physica Sinica, 2006, 55(2): 499-503.doi:10.7498/aps.55.499 |
[11] |
Ge Wei-Kuan.Effects of mass variation on form invariance and conserved quantity of mechanical systems. Acta Physica Sinica, 2005, 54(6): 2478-2481.doi:10.7498/aps.54.2478 |
[12] |
Qiao Yong-Fen, Li Ren-Jie, Sun Dan-Na.Hojman’s conservation theorems for Raitzin’s canonical equations of motion of nonlinear nonholonomic systems. Acta Physica Sinica, 2005, 54(2): 490-495.doi:10.7498/aps.54.490 |
[13] |
Fang Jian-Hui, Zhang Peng-Yu.The conserved quantity of Hojman for mechanicalsystems with variable mass in phase space. Acta Physica Sinica, 2004, 53(12): 4041-4044.doi:10.7498/aps.53.4041 |
[14] |
Xu Xue-Jun, Mei Feng-Xiang, Qin Mao-Chang.A nonNoether conserved quantity constructed using form invariance for Nielsen equation of a non-conservativemechanical system. Acta Physica Sinica, 2004, 53(12): 4021-4025.doi:10.7498/aps.53.4021 |
[15] |
Luo Shao-Kai, Guo Yong-Xin, Mei Feng-Xiang.Form invariance and Hojman conserved quantity for nonholonomic mechanical systems. Acta Physica Sinica, 2004, 53(8): 2413-2418.doi:10.7498/aps.53.2413 |
[16] |
Luo Shao-Kai, Guo Yong-Xin, Mei Feng-Xiang.Noether symmetry and Hojman conserved quantity for nonholonomic mechanical systems. Acta Physica Sinica, 2004, 53(5): 1270-1275.doi:10.7498/aps.53.1270 |
[17] |
Qiao Yong-Fen, Zhao Shu-Hong, Li Ren-Jie.Non Noether conserved quantity of the holonomic mechanical systems in terms of quasi-coordinates ——An extension of Hojman theorem. Acta Physica Sinica, 2004, 53(7): 2035-2039.doi:10.7498/aps.53.2035 |
[18] |
Luo Shao-Kai, Mei Feng-Xiang.A non-Noether conserved quantity, i.e. Hojman conserved quantity, for nonholonomic mechanical systems. Acta Physica Sinica, 2004, 53(3): 6-10.doi:10.7498/aps.53.6 |
[19] |
Fang Jian-Hui, Liao Yong-Pan, Zhang Jun.Non-Noether conserved quantity of a general form for mechanical systems with variable mass. Acta Physica Sinica, 2004, 53(12): 4037-4040.doi:10.7498/aps.53.4037 |
[20] |
Qiao Yong-Fen, Zhao Shu-Hong.. Acta Physica Sinica, 2001, 50(1): 1-7.doi:10.7498/aps.50.1 |